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A B S T R A C T

One of the most controversial practices in resting-state fMRI functional connectivity studies is whether or not to
regress out the global average brain signal (GS) during artifact removal. Some groups have argued that it is
absolutely essential to regress out the GS in order to fully remove head motion, respiration, and other global
imaging artifacts. Others have argued that removing the GS distorts the resulting correlation matrices and inap-
propriately alters the results of group comparisons and relationships to behavior. At the core of this argument is the
assessment of dimensionality in terms of the number of brain networks with uncorrelated time series. If the
dimensionality is high, then the distortions due to GS removal could be effectively negligible. In the current paper,
we examine the dimensionality of resting-state fMRI data using principal component analyses (PCA) and network
clustering analyses. In two independent datasets (Set 1: N¼ 62, Set 2: N¼ 32), scree plots of the eigenvalues level
off at or prior to 10 principal components, with prominent elbows at 3 and 7 components. While network clustering
analyses have previously demonstrated that numerous networks can be distinguished with high thresholding of the
voxel-wise correlation matrices, lower thresholding reveals a lower-dimensional hierarchical structure, with the
first prominent branch at 2 networks (corresponding to the previously described “task-positive"/"task-negative”
distinction) and further stable subdivisions at 4, 7 and 17. Since inter-correlated time series within these larger
branches do not cancel to zero when averaged, the hierarchical nature of the correlation structure results in low
effective dimensionality. Consistent with this, partial correlation analyses revealed that network-specific variance
remains present in the GS at each level of the hierarchy, accounting for at least 14–18% of the overall GS variance
in each dataset. These results demonstrate that GS regression is expected to remove substantial portions of network-
specific brain signals along with artifacts, not simply whole-brain signals corresponding to arousal levels. We
highlight alternative means of controlling for residual global artifacts when not removing the GS.
1. Introduction

Over the past decade, resting-state functional MRI studies have
become one of the most utilized approaches to study functional brain
organization in humans, as well as to study the physiological bases of
common psychiatric and neurological disorders (e.g. Di Martino et al.,
2014; Fox and Greicius, 2010; Power et al., 2014b; Raichle, 2015a).
However, unlike more traditional task-based fMRI, resting-state studies
lack a model of the underlying BOLD signal of interest, complicating the
separation of desired signal from a myriad of noise sources known to
affect BOLD fMRI measures (see Murphy et al., 2013, for a review).
Dozens of studies have now demonstrated the residual presence of rela-
tively whole-brain or “global” artifacts due to influences such as head
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motion, respiration, and hardware malfunction in the fMRI data even
after the application of popular de-noising strategies such as nuisance
regression (e.g. Jo et al., 2010; Van Dijk et al., 2012; Power et al., 2012;
Satterthwaite et al., 2013a; see Power et al., 2015, for review) and
ICA-based cleaning (e.g. Mowinckel et al., 2012). Given the global nature
of many of these artifacts and our lack of good simultaneous and inde-
pendent measures of them, a number of groups have used the global
average brain signal (or GS, for global signal) calculated within a
whole-brain mask as a nuisance time series in data cleaning (e.g. Fox
et al., 2005; Power et al., 2014a; Satterthwaite et al., 2013a). Indeed,
removing the GS during nuisance regression does strongly attenuate re-
sidual head motion artifacts, as well as respiration-related artifacts,
outperforming other nuisance regression strategies to which it’s been
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compared (e.g. Ciric et al., 2017; Parkes et al., 2018; Power et al., 2017b;
Satterthwaite et al., 2013a,b; 2017).

However, others have argued that the benefit of GS removal comes at
a high cost. Murphy et al. (2009) noted that removing the GS re-centers
the voxel-wise correlation matrix to 0, resulting in approximately half of
the correlation values being negative, even if the original correlations
were all positive. Saad et al. (2012, 2013) further pointed out that if GS
regression is applied to known (simulated) data, the correlation matrices
can be shown to undergo distortion from their true values in a complex
manner that depends on the original covariance matrix. This last prop-
erty has the implication that if comparing two groups of subjects with
different covariance/correlation structure (the expected case when con-
ducting a clinical study relative to a control group), the distortions will
not be the same in the two groups. Subsequently, several studies have
purported to show GS-related distortions of exactly this sort in real
datasets (e.g. Cheng et al., 2016, Supplementary Materials; Gotts et al.,
2013b; Hahamy et al., 2014; Xu et al., 2018; Yang et al., 2014). Gotts
et al. (2013b) made further claims that GS regression can result in poorer
experimental validity in the sense that their group comparisons between
ASD patients and typically developing controls were no longer in accord
with brain-behavior correlations in the ASD group.

Currently, the status of GS regression remains contested and unclear
(see Liu et al., 2017; Murphy and Fox, 2017, for reviews). Some groups
continue to use it and argue that indeed one must use it in order to
satisfactorily remove global artifacts such as head motion (e.g. Power
et al., 2014a; Satterthwaite et al., 2013ab). Other groups have dis-
continued its use, controlling for the contribution of residual head mo-
tion and other artifacts through motion matching and group-level
covariates in ANCOVA-style analyses (e.g. Cheng et al., 2016; Gotts et al.,
2013b; Saad et al., 2013; Yan et al., 2013a,b). Power et al. (2017a;
2017b) have made the case that while it is true that GS-related distortions
can occur in simulated data, these simulations have typically been
small-scale and “low dimensional” in terms of the number of distinct
networks (ranging from 3 to 9; e.g. Saad et al., 2012, 2013). If one instead
examines simulations with a sufficiently high number of networks that
have uncorrelated time series with one another (e.g. 50 or more, “high
dimensional”), then the network-specific time series can cancel to near
0 when averaged into a GS (an application of the Central Limit Theorem),
leaving only prominent global artifact time series that are shared across
all locations. Under these circumstances, the data distortions due to GS
regression can be so small that they are effectively negligible. We concur
with Power, Petersen and colleagues that data dimensionality is the
critical issue here and will likely determine whether the benefit of GS
regression is worth the potential cost.

In the current paper, we set out to characterize the dimensionality of
resting-state fMRI time series data using principal component analysis
(PCA) in two independent resting-state fMRI datasets (Set 1: N¼ 62, Set
2: N¼ 32). PCA is a multivariate technique that decomposes time series
data into a mutually orthogonal (i.e. uncorrelated) set of time series that
are ordered by amount of variance explained (Pearson, 1901; Hotelling,
1933; see Jolliffe, 2002, for review), and it is commonly used to assess
data dimensionality and for data reduction/compression. We further
examine how the PCA view of the data relates to the “network view” of
the data using cluster analyses, with network parcellations that are based
on thresholding the voxelwise correlation matrices (e.g. Yeo et al., 2011;
Power et al., 2011). Finally, we directly examine the question of whether
these network-specific time series average away to zero in the GS using
partial correlation analyses. Prior to these analyses, we present two sets
of simulations to help introduce and explain the analytic methods.

2. Materials and methods

2.1. Simulation 1

In the current study, we present two simulations for which all of the
details are known in order to introduce our main analysis techniques. The
2

main goal of these simulations is not to provide a theoretical account of
networks in the brain but to clarify how certain analyses work, what they
mean, and how certain logical assumptions either do or don’t play out as
expected. Time series and network assumptions of the simulations are
accordingly simplified. In Simulation 1, 1000 random time series were
created by randomly sampling a Gaussian distribution (mean¼ 0,
SD¼ 1) using the Matlab function randn, each of length 200 time points.
In the Two Clusters condition, a simple correlation structure was
included by adding a new common random time series to 500 of the
original time series (also generated using randn) and a different common
time series to the remaining 500 original time series. This resulted in two
large time series clusters (Cluster 1: 1–500, Cluster 2: 501–1000). In the
Zero Clusters condition, no shared time series were added. GS time series
were created for each condition by averaging over all 1000 time series,
and dimensionality and network structure were assessed using PCA and
MDS, described below.

2.2. Simulation 2

In this simulation, 1250 random time series were created by
randomly sampling a Gaussian distribution (mean¼ 0, SD¼ 1) using the
Matlab function randn, each of length 200 time points. A nested, 5� 5
hierarchical structure was created by adding 5 new common random
time series (also using randn) to ranges 1–250, 251–500, 501–750,
751–1000, and 1001–1250 and then 25 additional random time series to
subranges in groups of 50 (e.g. 1–50, 51–100, 101–150,…, 1201–1250).
A global common time series was then further added to each of the 1250
time series at half amplitude of the other random series (i.e. scaled by 0.5:
Gaussian mean¼ 0, SD¼ 0.5). A GS time series was created by averaging
over all 1250 time series, and dimensionality and network structure were
assessed using PCA, MDS, and hierarchical clustering (Matlab’s linkage
function as described below in Section 2.9 Hierarchical clustering ana-
lyses). To evaluate the claims of Carbonell et al. (2011), the simulation
was repeated 1000 times, each time calculating the correlation between
the first PC and the GS.

2.3. Subjects

The data in Set 1 were comprised of 62 right-handed males (mean
age¼ 21.2 years, SD¼ 5.1 years) with no history of psychiatric or
neurological disorders. Informed assent and consent were obtained from
all participants and/or their parent/guardian (participants younger than
18), and the experiment was approved by the NIMH Institutional Review
Board (protocol 10-M-0027, clinical trials number NCT01031407).
Subsets of these data have been used in several previous studies from our
lab, serving as TD controls for our studies of autism (Gotts et al., 2012,
2013b; Plitt et al., 2015; Ramot et al., 2017), lateralization of function
(Gotts et al., 2013a), and in the development of preprocessing procedures
(Jo et al., 2010; Power et al., 2017b). The data in Set 2were comprised of
32 right-handed subjects (20 females, 12 males; mean age 24.8 years,
SD¼ 3.9 years) with no history of psychiatric or neurological disorders.
Informed consent was obtained from all participants, and the experiment
was approved by the NIMH Institutional Review Board (protocol
93-M-0170, clinical trials number NCT00001360).

2.4. MRI acquisition

The data for Set 1 were acquired on a GE 3.0-T whole-body MRI
scanner at the National Institutes of Health Clinical Center NMR Research
Facility, using standard imaging procedures. For each subject, a high-
resolution T1-weighted anatomical image (magnetization-prepared
rapid acquisition with gradient echo, or MPRAGE) was obtained (124
axial slices, 1.2-mm slice thickness, field of view¼ 24 cm, 224� 224
acquisition matrix). Spontaneous, slowly fluctuating brain activity was
measured during fMRI, using a gradient-echo echo-planar imaging (EPI)
series with whole-brain coverage while subjects maintained fixation on a
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central cross and were instructed to lie still and rest quietly (repetition
time, TR¼ 3500ms, echo time, TE¼ 27ms, flip angle¼ 90�, 42 axial
contiguous interleaved slices per volume, 3.0-mm slice thickness, field of
view, FOV¼ 22 cm, 128� 128 acquisition matrix, single-voxel vol-
ume¼ 1.7� 1.7� 3.0mm3). Each resting scan lasted 8min 10 s for a
total of 140 consecutive whole-brain volumes. All EPI data were evalu-
ated for sharp head motion artifacts, with included scans required to be
less than or equal to 0.2 mm/TR using AFNI’s @1dDiffMag function
(comparable to mean Framewise Displacement, Power et al., 2012). In-
dependent measures of cardiac and respiration cycles were recorded
during the resting scans for later removal (all 62 subjects). A GE 8-chan-
nel receive-only head coil was used for all Set 1 scans with an accelera-
tion factor of 2 (ASSET), reducing gradient coil heating during the
session.

The data for Set 2 were acquired on a GE MR750 3.0-T scanner with a
32-channel receive-only head coil, also at the NIH Clinical Center NMR
Research Facility. As with Set 1, all scans were conducted with an ac-
celeration factor of 2 (ASSET). Each subject received a high-resolution
T1-weighted anatomical image (MPRAGE) (172 axial slices, 1.0-mm
slice thickness, 1.0mm3 isotropic voxels). Eyes-open rest scans were
acquired using a BOLD-contrast sensitive multi-echo echo-planar
sequence (TEs¼ 12.5, 27.7, and 42.9ms; TR¼ 2200ms, flip angle¼ 75�,
64� 64 matrix, in-plane resolution¼ 3.2� 3.2mm). Whole-brain EPI
volumes of 33 interleaved, 3.5-mm-thick oblique slices (manually
aligned to the AC-PC axis) were obtained every 2.2 s. Each resting scan
lasted 8min 4 s for a total of 220 consecutive whole-brain volumes. All
EPI data were evaluated for sharp head motion artifacts, with included
scans required to be less than or equal to 0.2 mm/TR using AFNI’s
@1dDiffMag. Independent measures of cardiac and respiration cycles
were recorded during the resting scans for later removal/examination,
although recording errors (dropped samples) prevented the use of these
data in 7/32 subjects.

2.5. MRI preprocessing

2.5.1. Single-echo processing
All Set 1 EPI scans were single-echo (TE ¼ 27 ms), whereas only the

middle echo (TE ¼ 27.7 ms) was used to calculate the volume-registered
data for Set 2 scans, since this TE was comparable to the appropriate echo
time to optimize T2* contrast. Preprocessing utilized the AFNI software
package (Cox, 1996), applying steps in the following order: 1) removal of
the initial 3–4 TRs to allow for T1 equilibration (4–5 times the T1 of gray
matter or ~ 8 s: 3 TRs for Set 1 and 4 TRs for Set 2); 2) 3dDespike to
bound outlying time points per voxel within 4 standard deviations of the
time series mean; 3) 3dTshift to adjust for slice acquisition time within
each volume (to t¼ 0); 4) 3dvolreg to align each volume of the
resting-state scan series to the first retained volume; 5) scans were then
spatially blurred by a 6mmGaussian kernel (full width at half maximum)
and divided by the voxelwise time series mean to yield units of per-
centage signal change; 6) the data were spatially transformed to standard
anatomical space (Talairach-Tournoux) with a downsampled spatial
resolution (6mm isotropic voxels) to minimize computational time for
later voxelwise PCA and MDS analyses; 7) low frequency trends were
removed using a 4th-order baseline polynomial function (3dDetrend).
The GS was calculated for each subject from these re-scaled and
detrended volume-registered data as the mean time series within a
whole-brain mask.

For data in Set 1, de-noising used the ANATICOR preprocessing
approach (Jo et al., 2010; see also Gotts et al., 2012) just after step 5
(spatial blurring and normalizing to percentage signal change) and prior
to step 6 (downsampling and Talairach transformation) in the above
steps. White matter and large ventricle masks were created from the
aligned MPRAGE scan using Freesurfer (e.g. Fischl et al., 2002). These
masks were resampled to EPI resolution and then eroded by 1 voxel to
prevent partial volume effects with gray matter voxels, and the related
nuisance time series were calculated on the volume-registered data just
3

prior to spatial blurring (after step 4 and prior to step 5 of the above
steps). Nuisance regression for each voxel was performed on the
volume-registered data following step 5 and prior to step 6, and the re-
gressors consisted of: 6 head-position parameter time series (3 trans-
lation, 3 rotation), 1 average eroded ventricle time series, 1 00localized”
eroded white matter time series (averaging the time series of all white
matter voxels within a 15mm-radius sphere), 8 Retroicor time series (4
cardiac, 4 respiration) calculated from the cardiac and respiratory mea-
sures taken during the scan (Glover et al., 2000), and 5 Respiration
Volume per Time (RVT) time series to minimize end-tidal CO2 effects
following deep breaths (Birn et al., 2008). Prior to regression, all
nuisance time series were detrended by a 4th-order polynomial function
to remove slow scanner drift and drift in head position, with the cleaned
residuals detrended in the same manner during regression. After
regression, cleaned time series were transformed to Talairach space and
downsampled to 6mm isotropic voxels, as with the volume-registered
data (i.e. as in step 6).

2.5.2. Multi-echo processing
Multi-echo ICA (MEICA) de-noising on Set 2 data was carried out

using the meica.py script that is available with AFNI. The initial steps of
meica.py are similar to the steps for the single-echo preprocessing, but
applied to all 3 echos of data: removing 1st 4 TRs, despiking the voxel-
wise time series (3dDespike), adjusting for slice-time acquisition
(3dTshift), rigid-body registration of all volumes to the first retained TR
(3dvolreg). All echos of data were then masked (whole-brain) and sub-
mitted to tedana.py with default settings, which uses the signal decay
properties across echos to separate time series into BOLD-like and non-
BOLD-like components derived from Independent Component Analysis
(ICA) using automated criteria (see Kundu et al., 2012, 2013, for full
details). After MEICA de-noising, BOLD-like data were transformed to
Talairach space and downsampled to 6mm isotropic voxels, as with the
volume-registered data.
2.6. Principal component analysis (PCA)

PCA served as our primary tool to assess data complexity and
dimensionality in simulated and real fMRI data. We applied PCA to the
timeseries data of both simulated data (Simulations 1 and 2) and to the
voxelwise volume-registered data of individual subjects, using Matlab’s
princomp function. This function returned the coefficient matrix, the
component scores (the projection of the data into component space), as
well as the eigenvalues of each component (the variances of the
component scores). The eigenvalues could then be used to characterize
how much variance out of the total each component accounted for in the
voxelwise time series data, dividing each eigenvalue by the sum of all
eigenvalues. PCA was also applied to the group-average voxelwise
covariance/correlation matrix of the de-noised data using the Matlab
function pcacov, returning the eigenvalues for each component. When
using PCA to perform data compression/reduction, a common recom-
mendation is to find the leveling off point or “elbow” (e.g. Thorndike,
1953) of the eigenvalues in the scree plot and retain all of the PCs above
this point. Other commonly recommended criteria include keeping PCs
with raw eigenvalues above 1 (specifically for PCA on correlation
matrices; Kaiser, 1960) or requiring that a certain fixed amount of cu-
mulative variance be explained (e.g. 90% of all variance) (see Jolliffe,
2002, for review/discussion). Using the cumulative-variance-explained
criterion can be more prone to inaccuracies when long noise tails are
present and the overall signal to noise ratio of the data is low. In the
current paper, we will examine both the scree plots of the eigenvalues, as
well as the cumulative variance explained, in order to gain a fuller
perspective on the dimensionality of the signals involved.

Time series reconstructions for individual subjects including only the
first X PC’s was achieved by reversing the projection into component
space using the inverse of the coefficient matrix:
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TSrecon (PCs 1 to X)¼ scores(:, 1:X) * coeff�1(1:X,)
Results were also checked against the Matlab function pcares.
Following reconstruction, voxelwise correlation matrices could then be
calculated for each subject using the new time series, followed by group-
average correlation matrices. Comparisons between parcellated net-
works using reconstructed time series were done by calculating the
average within-network level of correlation for each individual subject,
as well as the average across-network correlations for each network
combination. Statistical comparisons were then calculated across sub-
jects using t-tests after first applying the Fisher’s z-transform to the cor-
relations to yield more normally distributed values.

2.7. Network parcellations

Network parcellations were conducted at multiple levels ranging
from simple to complex in order to assess hierarchical relationships
present among fine-grained networks that have been previously
described. Group-averaged, voxelwise correlation matrices calculated on
the de-noised data for Sets 1 and 2 (using ANATICOR and MEICA,
respectively) were thresholded (binary undirected) over a wide range of
thresholds and submitted to cluster analyses using the Louvain Modu-
larity (Blondel et al., 2008; Rubinov and Sporns, 2010) and InfoMap
(Rosvall and Bergstrom, 2008, 2011) algorithms. Included voxels were
the intersection of the scanning field of view for each set and the field of
view of the “liberal” gray matter parcellations of Yeo et al. (2011;
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo
2011) after first transforming these parcellations to Talairach space to
insure the most comparable cohort of voxels. Correlation values were
ranked and thresholded in terms of tie density (top X %) over the whole
matrix, using values: top 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%,
15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%. Louvain
Modularity was applied to all of these thresholds for both sets, and
InfoMap was applied to all values of top 20% or higher (excluding lower
thresholds due to lengthy run times). For Louvain Modularity, a range of
the ‘gamma’ parameter (the resolution of the parcellations) was
explored, with 1.0 (classic modularity), less than 1.0 (courser: 0.75), and
greater than 1.0 (finer: 1.25, 1.5, 2.0, 2.5). Each threshold was tested for
100 iterations for Louvain Modularity due to the stochastic aspects of the
clustering procedure. From these 100 iterations, a summary matrix was
constructed containing the likelihood that each voxel was clustered
together with every other voxel (values ranging from 0 to 1). This like-
lihood matrix was then thresholded at 0.5 and clustered one final time.
Cluster solutions using InfoMap were taken as the optimal solution over
1000 iterations. Small and singleton clusters (i.e. a single voxel) derived
from either algorithm were excluded by requiring that retained clusters
be at least 1% in size of the total number of voxels being clustered (2895
total 6mm3 voxels for Set 1; 2700 voxels for Set 2; these differ due to
slightly different scanning fields of view in the two sets). Solutions were
counted as stable if both sets gave matching cluster solutions at the same
or adjacent thresholds when applying the same algorithm.

2.8. Agreement of parcellations and MDS

Multidimensional Scaling analyses (MDS) permit visual inspection of
the low-dimensional aspects of high-dimensional data and were applied
in order to assess agreement with the low-order parcellations conducted.
MDS analyses were applied to the unthresholded group-average voxel-
wise correlation matrices of Sets 1 and 2 after first converting these
matrices to distances using the Matlab function pdist. All MDS analyses
compressed the full similarity space to two dimensions for ease of
viewing, employed the metric version of MDS (Matlab’s mdscale), and
minimized the squared stress goodness-of-fit criterion. Group-average
correlation matrices submitted to MDS on the actual resting-state fMRI
data for Sets 1 and 2 were calculated on the volume-registered data using
a field of view that overlapped the Yeo et al. (2011) parcellations of gray
4

matter voxels. For the 2-network and 4-network parcellations, only
voxels that agreed in network membership across the two sets were
included for viewing in MDS scatterplots. Network membership in these
scatterplots was conveyed by distinct colors for each network.

2.9. Hierarchical clustering analyses

We applied hierarchical clustering analysis to simulated data in
Simulation 2 and to the volume registered data for Sets 1 and 2 in order to
quantitatively assess hierarchical relationships among the networks. For
Simulation 2, the voxelwise correlation matrix was converted to a
Euclidean distance matrix using Matlab’s pdist function and submitted to
hierarchical clustering analysis with Matlab’s linkage function. For data
in Sets 1 and 2, we first extracted network-averaged time series for each
network in the 7- and 17-network parcellations of Yeo et al. (2011). We
then calculated group-averaged 7� 7 and 17� 17 network-level corre-
lation matrices and converted these to Euclidean distances (using pdist),
which were submitted to hierarchical clustering analysis (using linkage).
Results from the linkage function were then viewed as dendrograms. For
Sets 1 and 2, results were considered stable if the dendrograms had the
same branching structure in both sets.

2.10. Partial correlation analyses and R2 estimates

We used partial correlation analyses to check for network-specific
variance present in the GS at different levels of the network hierarchy.
For each subject, network-specific time series were calculated by aver-
aging the time series across voxels within each network for the N¼ 2,
N¼ 4, N¼ 7, and N¼ 17 parcellations. This was done on the de-noised
time series data for Sets 1 and 2 in order to minimize the amount that
noise sources might contribute to the estimates. To estimate a network’s
unique contribution to the GS of the volume-registered data, the other
network time series at the same level were partialled from that network’s
time series and from the GS using least squares multiple regression. The
Pearson correlation of these two residual series is equal to the corre-
sponding partial Pearson correlation coefficient (the partial r-value).
Partial r-values were then transformed by Fisher’s z to improve normality
and were tested at the group-level against a value of 0 for Sets 1 and 2,
with multiple comparisons corrected by false discovery rate (FDR, e.g.
Genovese et al., 2002) over all individual network tests within a set (e.g.
2 þ 4þ7 þ 17 ¼ 30 total tests for Set 1 or Set 2). Estimates of R2 were
then calculated for each network by squaring the partial r-value and
multiplying it by the ratio of the residual variance left in the GS after
partialling relative to the total variance in the GS prior to partialling (i.e.
adjusting for the amount of variance removed by the other networks in
terms of the original GS variance). The total R2 in the original GS due to
network-specific sources was then the sum of the individual network R2

values when using the N¼ 2 parcellation, since using finer-grained par-
cellations would partial away the shared variance that defines these two
large network branches.

The success of the partialling procedure at removing shared global
variance due to artifactual sources such as head motion was checked
using regression analyses. Each network-specific time series (the pre-
dictor variable) was regressed against the original GS (dependent vari-
able) both prior to and after partialling the other network-specific time
series from the predictor variable at the same level of the network hi-
erarchy, yielding a beta weight that represented the degree of fit. The
choice of beta weights for this purpose is important, since the beta weight
does not depend on additional variance present in the dependent variable
(the GS) that is uncorrelated with the predictor variable (i.e. the network-
specific time series). If shared variance due to factors such as motion is
removed from the predictor variable by partialling the other network
time series, the remaining presence of motion information in the full GS
will then have no residual impact on the beta weight estimate. If Pearson
correlation were chosen instead of regression, then the resultant r-values
would always exhibit motion dependence to the extent that motion
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Fig. 1. Simulation 1. (A) Sample random time series from the two clusters in
the Two Clusters condition. The sample Cluster 1 time series is shown in green,
and the sample Cluster 2 time series is shown in black. (B) Top panels show the
all-to-all correlation matrices for the 1000 time series, with the Two Clusters
condition shown on the left and the Zero Clusters condition shown on the right.
Correlation values are indicated by color, with colorbars shown to the right of
each plot. The bottom panels show the corresponding two-dimensional MDS
scatterplots for the two conditions. The Two Clusters condition on the left shows
two well-isolated clusters of points, with each point representing a single time
series and Cluster 1 points (time series 1–500) shown in green and Cluster 2
points (time series 501–1000) shown in black. The same ranges of time series for
the Zero Clusters condition are shown to the right, with the time series forming a
ring around the origin (0,0). (C) Scree plot of the eigenvalues in the left panel
shows proportion of time series variance explained by each individual compo-
nent in PCA for the two conditions (Two Clusters shown in red, Zero Clusters
shown in blue), with the corresponding cumulative time series variance
explained by PCs 1-X shown in the right panel (where X is the component
number plotted along the x-axis).
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variance is present in the GS, since the variance of both variables is used
in normalizing the r-value. After acquiring the beta estimates, the inter-
subject variability in the beta weights from these regressions was then
examined against the amount of head motion present in the scan (AFNI’s
@1dDiffMag, comparable to mean Framewise Displacement over a scan,
Power et al., 2012) using Pearson correlation, with multiple comparisons
corrected by FDR over all individual network tests within a set (i.e. 2 þ
4þ7 þ 17 ¼ 30 total tests). This approach is similar to quality-control
analyses used by other groups (e.g. Satterthwaite et al., 2013a; Power
et al., 2014a,b) to examine the motion dependence of functional con-
nectivity estimates.

3. Results

Before examining actual resting-state fMRI data, we present two
simulations for which all of the details are known in order to introduce
our main analysis techniques. In Simulation 1, we compare 1000 random
simulated time series with and without a lower-order correlational
structure (either two large clusters of time series or none). We use PCA to
examine the variance/covariance of these simulated datasets, further
checking the structure using Multidimensional Scaling (MDS) analysis
(e.g. Cox and Cox, 2001) - a technique that can compress the similarities
of all of the time series into two dimensions for easier viewing. We then
examine how the variance/covariance of these datasets are affected
when the time series are averaged into a single global time series (the
GS). In Simulation 2, we examine all of these same features for a dataset
with a more complex hierarchical correlational structure (5 large time
series clusters, each of which are further divided into 5 smaller clusters
for a total of 25 clusters).

We would emphasize at the outset that the goal of these simulations is
not to account for real data, in which we are putting forward a detailed
neurobiological account of resting-state dynamics and providing detailed
estimates of the myriad of measurement artifacts present in the data.
Rather, the goal in this case is more to expose how certain analyses work,
what they mean, and how certain logical assumptions either do or don’t
play out as expected. As a result, the time series and network assumptions
of the simulations are simplified for purposes of exposition.

3.1. Simulation 1: two versus zero clusters

In this simulation, we generated 1000 random time series from a
Gaussian distribution (mean¼ 0, SD¼ 1), each of length 200 time points
(see Fig. 1A for example time series and Section 2.1 in Materials and
Methods for details). In one condition (Two Clusters), we created a simple
correlation structure by adding a common random time series to 500 of
the original time series and a different common time series to the
remaining 500, resulting in two large time series clusters (Fig. 1B, left
panels). In the other condition (Zero Clusters), no shared time series were
added (Fig. 1B, right panels). In the case of Two Clusters, a scatterplot of
the 1000 time series after MDS analysis nicely shows two discrete
groupings of points, green and black. In contrast, the corresponding
scatterplot for the Zero Cluster case shows full intermixing of the same
time series ranges in a ring around the center, as is common in metric
MDS for unstructured data (e.g. Hughes and Lowe, 2002). When applying
PCA to these data, the data are decomposed into a series of mutually
orthogonal time series (i.e. with inter-correlations of 0) referred to as
“principal components” (PC), with the first PC explaining the most
variance, the second PC explaining the next most variance that is un-
correlated with the first, and so on. After applying PCA to the 1000� 200
time series data in both cases, Fig. 1C shows information about the
dimensionality of the time series. The left panel shows the variance of the
full time series data that is explained by each individual PC (also referred
to as a “scree plot” of the eigenvalues; e.g. Cattell, 1966; see Jolliffe,
2002, for discussion). The right panel, in contrast, shows how much of
the full time series data are explained in a cumulative fashion when
including the first X PCs (e.g. the first 2 PCs in the Two Cluster case
5

explain a combined 50% of the total time series variance).
What can one conclude about the dimensionality of these cases? In

the case of Two Clusters, the scree plot in the left panel shows that the
first two PCs are the only ones that explain a large proportion of variance,
leveling off to approximately a flat line after this representing a Gaussian
“noise tail”, with each added PC only explaining a tiny fraction of the
variance. This is expected in this case because there is no easy shortcut to
re-representing what are otherwise Gaussian random time series (with
correlations near zero before adding the shared time series) than to add
approximately one PC for each random time series - as this is the basis of
all of the within-cluster variability that remains. Indeed, in the case of
Zero Clusters, all of the variance must be explained in this way.
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Accordingly, the right panel shows a relatively linear increase in variance
explained up until the point that 100% of the variance can be explained
(i.e. when the number of PCs equals the length of the time series, 200).

Both of these cases are “high-dimensional” if the goal is to explain
most of the unaveraged time series variance in the sets, requiring more
than 100 PCs to reach 90% of the variance. However, the Two Clusters
case has prominent low-dimensional aspects, with the first two PCs
explaining approximately half of all of the variance. If the goal instead is
to understand the dimensionality that is most relevant for the GS, then
the answer is more unequivocal. When the 1000 time series are averaged
into a GS in the Two Clusters case, the Gaussian random variation that
determines all of the within-cluster variation averages away to near
0 (since each sample time point was drawn from a distribution with
0 mean and standard deviation of 1), leaving the prototype time series
that was added to each cluster (see Fig. S1 for a graphical depiction of the
Cluster 1 data). Each prototype cluster time series then makes up
approximately 50% of the GS, explaining near 100% of the GS variance
when combined. In other words, the dimensionality relevant for the GS is
2 rather than 100þ, which was nicely conveyed by the scree plot of the
eigenvalues (left panel of Fig. 1C). In the case of Zero Clusters, the means
of each time point are approximately zero, leaving something close to a
flat line in time (see Fig. S1). If we were to add even a tiny common signal
to all of the time series in the Zero Clusters case, this would come to
dominate the GS, since everything else would average away to zero.
Fig. 2. Simulation 2. (A) All-to-all correlation matrix of 1250 random time series w
by adding 5 random prototype time series (mean¼ 0, SD¼ 1) to different ranges of
networks were nested within the 5 large-scale networks by further adding 25 pr
51–100, etc.). A common random time series with reduced weight (mean¼ 0, SD¼
colorbar to the right. (B) Two-dimensional MDS scatterplot showing five nicely isolat
first level of the hierarchical structure, with points representing the individual time se
all-to-all correlation matrix, with 5 large clusters that are each broken down further
showing leveling-off points at PCs 2, 6 and 26 marking the presence of a global c
corresponding cumulative time series variance explained in the right panel.
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3.2. Simulation 2: hierarchical correlation structure plus a common shared
signal

Given the context of Simulation 1, we can now consider a slightly more
complicated situation. As in the last simulation, each simulated time
series (length 200 time points, 1250 total time series) was constructed by
first sampling a Gaussian distribution with a mean of 0 and a standard
deviation of 1. Five large-scale clusters or “networks” were then defined
by adding 5 new random prototype time series to different ranges of the
1250 time series. Hierarchical structure was then created by further
adding five new random time series to different ranges of each large-scale
network. This resulted in a total of 25 smaller networks that were
embedded in the 5 larger networks (see correlation matrix in Fig. 2A).
Finally, a common random time series was added to all 1250 time series,
with a reduced weight of 0.5. After MDS, a scatterplot of the similarity of
the 1250 time series revealed 5 distinct clusters (Fig. 2B), corresponding
to the five larger “parent” networks, while the distinctions among the 25
fine-grained “child” networks were less obvious when viewed in two
dimensions. A hierarchical cluster tree was then constructed from the all-
to-all correlation matrix (detailed in Section 2.9; see Fig. 2C), which
nicely re-capitulated the planned 5� 5 network structure. When PCA is
applied to the 1250� 200 time series dataset, the scree plot of the ei-
genvalues shows leveling-off points at 2, 6 and 26 PCs (Fig. 2D, left
panel). The leveling-off point at 2 PCs is largely due to the common
random time series, which is prominent in the 1st PC but less so in later
ith hierarchical network structure added. Five large-scale networks were defined
the 1250 time series (cluster 1: 1–250, cluster 2: 251–500, etc.). Smaller-scale
ototype time series to smaller subranges of the 1250 time series (e.g. 1–50,
0.5) was also added to all voxels. Pearson r-values are indicated by color, with
ed clusters of points, corresponding to the 5 large scale clusters that make up the
ries out of the 1250. (C) Dendrogram showing the hierarchical cluster tree of the
into 5 subnetworks for a total of 25 networks. (D) Scree plot of the eigenvalues
ommon time series and aspects of the hierarchical structure (left panel), with
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PCs, with leveling-off points at 6 and 26 PCs reflecting the hierarchical
network structure. When viewing the cumulative variance explained
(Fig. 2D, right panel), changes in slope are clear at PCs 5 and 25, with the
noise tail continuing on until 200 PCs and reaching 90% variance
explained by 104 PCs.

As with the previous simulation, the dimensionality relevant for the
GS is strongly influenced by the structure of the large-scale networks.
When taking only the 5 prototype large network time series (a “coarse”
network identification scheme) and entering them into a multiple
regression to explain the GS, one can account for 41.2% of the variance in
the GS (~8% for each large network). Repeating this instead with all 25
subnetwork time series (as one might in a more highly thresholded
network identification approach), one reaches 57.0% of the variance in
the GS, with 15.8% attributable selectively to the subnetworks beyond
the 5 large networks. Further adding the common random signal to the
regression model, which might be thought of as a global nuisance signal
or a non-specific neurogenic signal, one can account for 99.8% of the
variance in the GS (42.8% selectively attributable to the common signal),
with only 0.17% of the variance attributable to unaveraged Gaussian
variation in the individual time series. If one repeats this simulation,
leaving out the 5 large-network time series (resulting in 25 networks, but
without a clear hierarchical structure), the variance in the GS selectively
explained by the common signal shifts from 42.8% up to 75.2% and the
total amount of variance explained by the network structure shrinks from
57% to below 25% (see Fig. S2, panel A for a graphical depiction). From
these results, it is apparent that one can’t simply look to the number of
distinguishable networks in the data (N¼ 25 in both cases) to understand
the impact of GS averaging; one must understand and account for the full
hierarchical network structure. The presence of lower-order correlation
structure can shift the effective dimensionality from high to low because
these prominent sources of variance are shared over a wide scale, ac-
counting for large portions of total variance.

For Simulation 2, it is further interesting to note the relationship
between the GS and the first PC of the data. Carbonell et al. (2011) have
previously argued that extremely high agreement between the GS time
series and that of the first PC indicates that no network structure is
contaminating the GS. In other words, they argue that the GS represents a
linearly additive signal that can be safely removed, with all of the desired
network structure contained in PCs 2 and beyond. To examine this issue,
we re-ran this simulation 1000 times, each time finding the correlation
between the first PC of the 1250� 200 time series dataset and the cor-
responding GS time series. As in the Carbonell et al. (2011) results for the
actual fMRI data, the mean correlation between the first PC and the GS
across iterations was found to be 0.989 (SD¼ 0.0094), despite the fact
that more than 50% of the variance in the GS was due to network-specific
sources (mean¼ 55.1%, SD¼ 4.7%). This simulation constitutes an ex-
istence proof that Carbonell et al. (2011) may have dismissed
network-specific contributions to the GS prematurely.

It is important to emphasize, however, that the weight of the common
random time series can have a large impact on the results of Simulation 2.
Repeating Simulation 2 for different weighted values of the common time
series, ranging from 0.1 to 2.0 (1000 iterations for each value), network-
specific signals account for approximately 95% of the GS variance at a
weight of 0.1, whereas they account for approximately 6% at a weight of
2.0, with the remaining variance due to the common time series (see
Fig. S2, panel B). The appropriate weighting factor for this variable
needed to match real data is unknown, and any comparison to real data
will await the analyses of the fMRI datasets.

3.3. PCA analyses of single-subject and group-level fMRI data

Having introduced our analysis tools in the context of Simulations 1
and 2, we are now ready to examine the dimensionality of the actual
resting-state fMRI data. Since the GS is usually calculated over a whole-
brain mask from the single-subject data after the point of volume regis-
tration of the individual TRs (i.e. individual EPI time samples of a whole-
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brain volume) and prior to any nuisance regression (e.g. Fox et al., 2005;
Power et al., 2014a), it is the dimensionality of the volume-registered
data that is relevant for the GS averaging debate. Two sets of fMRI
resting-state data were used for these analyses, one using more tradi-
tional single-echo BOLD acquisition (Set 1, N¼ 62) and another using a
newer multi-echo acquisition (Set 2, N¼ 32) with a middle echo
(TE¼ 27.6ms) that could be analyzed in the same manner as the
single-echo data in Set 1 (TE¼ 27ms) (see Sections 2.4 and 2.5 for
complete details).

Fig. 3A and B (left panels) show the scree plots of the eigenvalues for
the individual-subject, volume-registered time series datasets for Set 1
and Set2, respectively. Similar to the examples shown in Simulations 1
and 2, only the first few eigenvalues explain substantial amounts of
variance in terms of individual PCs, with the eigenvalues leveling off
prior to 10 PCs in both sets and the most prominent bend in the curves
near 4–5 PCs. Correspondingly, the middle panels of Fig. 3A and B shows
a rapid rise in the cumulative variance explained up until around 10 PCs,
after which the slopes level off in a more linear fashion until approxi-
mately 90 percent of the variance is explained at 50 or more PCs for the
typical subject (themean curve reaches 90% at 56 PCs in Set 1 and 63 PCs
in Set 2). Note that these numbers on cumulative variance explained are
similar to those observed in some prior studies using PCA to estimate
dimensionality of resting-state data (e.g. Kundu et al., 2013, Supporting
Information).

To gain a better understanding of how these PCA results may relate to
network structure that is typically studied in de-noised data, we also
calculated scree plots on the group average covariance matrices for both
sets after de-noising. For Set 1, we used the ANATICOR nuisance
regression method that includes modeling physiological artifacts due to
cardiac and breathing cycles (Jo et al., 2010, 2013; Gotts et al., 2012),
and for Set 2, we utilized a newer method that makes use of the
multi-echo features of the data to sort BOLD from non-BOLD variance
with ICA (multi-echo ICA or MEICA; Kundu et al., 2012) (for details, see
Section 2.5). We also focused on the gray-matter-only field of view used
in prior cortical parcellations with large datasets (Yeo et al., 2011). As
shown in the right panels of Fig. 3A and B, notable bends in the scree
plots of the eigenvalues calculated on the de-noised data are common to
both datasets at 3 and 7 PCs, with the sharpest elbow at 7PCs and more
minor leveling-off points at 13 and 18 PCs (analogous plots for Simula-
tions 1 and 2 are shown in Figs. 1C and 2D). In the next section, we will
examine to what extent these common bends might reflect markers of
hierarchical network structure.

3.4. Network clustering analyses reveal low-dimensional hierarchical
structure

Previous studies from several labs have already thoroughly charac-
terized the organization of the cerebral cortex into fine-grained network
parcellations based on both resting-state and task-based data (e.g.,
Craddock et al., 2012; Doucet et al., 2011; Glasser et al., 2016; Gordon
et al., 2016; Power et al., 2011; Shen et al., 2013; Shirer et al., 2012; Yeo
et al., 2011). Some of these have also previously noted the hierarchical
nature of these relationships when thresholding the brain-wide correla-
tion matrices at progressively higher levels (e.g. Power et al., 2011; Yeo
et al., 2011; see also Doucet et al., 2011). In these analyses, we conduct
parcellations of the cortex in both resting-state datasets usingmuch lower
thresholding to examine the lower-dimensional correlation structure. We
also examine how this organization relates to previously published
finer-grained parcellations that have used large datasets with replication,
focusing in particular on the Yeo et al. (2011) 7-network and 17-network
parcellations and comparing to views of the voxelwise correlation
matrices in the absence of any thresholding using MDS. Finally, we
conduct more direct hierarchical clustering analyses using the Yeo et al.
(2011) parcellations.

Group-averaged, voxelwise correlation matrices were thresholded at
a wide range of levels in both datasets (see Section 2.7 for complete



Fig. 3. PCA applied to the resting-state time series data for Sets 1 and 2. Scree plots of the eigenvalues for the volume registered data (detailed in Section 2.5.1
Single-echo processing) of all individual subjects are shown in the left panels (Set 1 in A, N¼ 62; Set 2 in B, N¼ 32). Middle panels show the corresponding cumulative
time series variance explained in the volume-registered data for the individual subjects, along with the means of these curves in thick dashed black lines. Horizontal
dotted lines marking 90% of the variance explained in each set are shown for reference. The right-most panels show similar scree plots of the eigenvalues for the
group-average covariance matrices when applying PCA to the de-noised data, using ANATICOR to clean the Set 1 data (A) and MEICA to clean the Set 2 data (B).
Prominent leveling-off points that are common to the two sets are marked at 3 and 7, with more minor leveling-off points marked at 13 and 18.
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details). Two different algorithms were used for cluster analyses: Louvain
Modularity (e.g. Blondel et al., 2008; Rubinov and Sporns, 2010) and
InfoMap (Rosvall and Bergstrom, 2008, 2011). At the lower thresholds,
stable solutions were observed at N¼ 2 networks, corresponding to the
well-known “task-positive"/"task-negative” parcellation (e.g. Fox et al.,
2005; shown in yellow and red, respectively, in Fig. 4, top two rows). As
the thresholds were raised to higher levels, a fronto-parietal network
(shown in orange) partially overlapping the first two split off, resulting in
N¼ 3 networks. This was followed by the separation of the remaining
task-positive voxels into visual (purple) and somatomotor networks
(blue) (N¼ 4 networks, see middle rows of Fig. 4), observed for both
datasets with Louvain Modularity from 3 to 20% tie density and with
InfoMap for Set 1 from 8 to 10% tie density. Higher thresholding led to
finer-grained parcellations similar to the 7-network and 17-network
parcellations of Yeo et al. (2011). However, the solutions were not
identical across the two datasets at any higher threshold (<3% tie den-
sity) for either Louvain Modularity or InfoMap, likely because our sets
involved many fewer subjects than Yeo et al. (2011) and had slightly
different scanning fields of view (FOV), which in turn would be expected
to lead to less stable estimates of the group-average correlation matrices.
For finer-grained parcellations in the current paper, we will therefore use
the previously published 7-network and 17-network parcellations of Yeo
et al. (2011) that have well-established replication (shown in the bottom
two rows of Fig. 4). Our datasets do appear to contain these network
distinctions, as well, insofar as the correlations within network are
greater than the correlations across networks for both parcellations. For
Set 1, within-network correlations were greater than the average
across-network correlations for all 7 networks [t(61)>3.09, P< .003 for
8

all 7 comparisons] and all 17 networks [t(61)>5.92, P< .0001 for all 17
comparisons]. For Set 2, within-network correlations were greater than
the average across-network correlations for all but the “limbic” network
for the 7-network parcellation (shown in white) [t(31)>13.92, P< .0001
for 6/7 tests; P> .4 for limbic network test], which was partly excluded
from the field of view for these scans (ventromedial prefrontal and
medial temporal cortices). Nevertheless, all within-network correlations
were greater than the average across-network correlations for the
17-network parcellation [t(31)>4.72, P< .0001 for all 17 comparisons].
Given the prominent leveling-off points in the scree plots of Fig. 3A and B
(right panels) at 3 and 7 - and to lesser extent 13 and 18, the existence of
stable parcellations at N¼ 2, 7, and 17 raise the possibility that the scree
plots reflect markers of hierarchical network organization.

We next examined whether these lower-order parcellations into large
networks corresponded to visible clusters in two-dimensional renderings
of the unthresholded voxelwise correlation matrix using MDS (as in
Fig. 2B for Simulation 2). For these analyses, the parcellations performed
on the de-noised data were applied to MDS analyses of the correlation
matrix for the volume registered data. In other words, is this network
structure prominent in the data prior to data cleaning when the GS is
calculated? Fig. 5 shows the results of MDS on the group-average vox-
elwise correlation matrices for Set 1 in the left column and Set 2 in the
right column, with the scatterplots in the top row showing individual
black dots for each voxel’s column in the matrix. Nearby dots indicate
highly similar patterns of correlation down the rows of the matrix,
whereas dots far away indicate dissimilar patterns. The 2- and 4-network
parcellations across the Sets 1 and 2 were unified into single sets by
retaining only those voxels with identical network membership in both



Fig. 4. Network parcellations from coarse to fine. The voxelwise correlation
matrices calculated on the de-noised data for Sets 1 and 2 (using ANATICOR and
MEICA, respectively) were parcellated into networks over a range of thresholds
using both Louvain Modularity and InfoMap algorithms. At the lowest thresh-
olds (top two rows), 2 large networks were stable across sets, corresponding to
previously described “task positive” (yellow) and “task negative” (red) brain
regions (shown uses top 40% of correlation values and Louvain Modularity with
gamma¼ 0.75). At higher thresholds, 4 networks were stable in both sets (rows
3 and 4; shown uses top 5% of correlation values and Louvain Modularity with
gamma¼ 0.75). Red corresponds to larger DMN, purple corresponds to the Vi-
sual network, blue corresponds to the larger Somatomotor network, and orange
corresponds to the larger Fronto-parietal network. The fifth and sixth rows show
the previously published 7- and 17-network parcellations of Yeo et al. (2011)
after first transforming from MNI to Talairach space.

Fig. 5. MDS scatterplots shown in relation to network parcellations. The
unthresholded group-average voxelwise correlation matrices calculated on the
volume registered data were converted to distances and submitted to metric
MDS analyses with two dimensions (Set 1 in left column, Set 2 in right column).
The top row shows scatterplots for all voxels in the field of view of the Yeo et al.
(2011) parcellations, using black dots to represent each voxel’s column in the
all-to-all distance matrices. The 2- and 4-network parcellations show results by
network using color for voxels that agree in their network classification. The
7-network parcellation of Yeo et al. (2011) is shown in the bottom row, with the
limbic network (white in the key) rendered as black dots for visibility on a white
background. Viewing the progression from 2 to 7 networks provides a concrete
rendition of the hierarchical arrangement of the networks at the voxel level,
with high dot densities corresponding best visually to the top levels of the hi-
erarchical tree (2 and 4 networks).
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sets. Overall, the correlation structure using MDS was highly similar
between the two sets, with one cluster of highly dense points in the lower
right of the scatterplots and 1–2 clusters of highly dense points in the
lower and upper left. Using the same color schemes as for Fig. 4 to show
network membership, the 2-network parcellation clearly corresponds to
the division between the lower right density of points (task-negative
voxels shown in red) and the upper and lower left densities (task-positive
voxels shown in yellow). As one progresses to 4 networks, the lower right
scatterplot density persists as the task-negative or default-mode network
(DMN, in red), the two separate densities on the left correspondmainly to
the visual (purple) and somatomotor (blue) networks, and the fronto-
parietal network (orange) is a mix of both task-positive and -negative
voxels with slightly more weighting toward the task-positive voxels.
Further differentiation occurs for the 7-network parcellation of Yeo et al.
(2011), with the DMN dividing into a continuing DMN (red) and a limbic
network (shown in black to be visible against a white background), the
fronto-parietal network dividing into a continuing fronto-parietal
network (orange) and the dorsal attention network (green), and the
somatomotor network dividing into a continuing somatomotor network
9

(blue) and the ventral attention network (pink) (the visual network re-
mains a single network, purple). However, these further networks have
less correspondence to clear separate point densities in these
two-dimensional scatterplots (with the exception of the limbic network,
to the upper right), but rather as adjacent and partly overlapping portions
of the previous densities. The best visible agreement between the two
approaches occurs for the 2–4 network parcellations, and this
lower-dimensional network structure is clearly apparent in the MDS re-
sults of the volume registered data.

Finally, given the agreement of the network clustering and MDS an-
alyses, we decided to examine the hierarchical structure of the volume
registered data using more direct hierarchical clustering analyses for the
two datasets (as in Fig. 2C for Simulation 2; see Section 2.9 for method-
ological details). The 7-network parcellation yielded identical results for
the two sets and these agreed well with the results of the cluster analyses
across tie density thresholds (Fig. 6). The top branch of the clustering
trees corresponded to the task-positive/task-negative division. The task-
positive branch was then further divided into a larger somatomotor
branch and a branch containing the visual network and a larger fronto-
parietal network (i.e. the 4-network solution). Finally, these were
further divided into the 7-network solution as already described above.
The right-most location of the fronto-parietal network within the task-
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positive branch also reflects its relative similarity to the task-negative
network. The hierarchical clustering analysis of the 17-network parcel-
lation did not yield identical solutions across the two sets. However, a
best-match analysis did yield consistent results when each of the 17
networks were placed into a “most-similar” branch of the 7-network
solution. The synthesized full hierarchical tree spanning the 2- and 17-
network levels that replicated across Set 1 and Set 2 is shown in
Fig. S3. Note the broad similarity of this hierarchical organization with
that described earlier by Doucet et al. (2011) when using ICA-based
methods, agreeing particularly well in the highest branches of the tree
(N¼ 2 through 4 or 5).
3.5. Relating the PCA and network clustering analyses

From the previous analyses, it is clear that there are prominent low-
dimensional aspects to the voxelwise correlation structure in both the
de-noised and the volume-registered data. However, it is still unclear
how the information from PCA relates to the different levels of the
network hierarchy observed through network clustering. How do
different ranges of the PCs relate to specific networks? Is all of the fine-
grained information in the 17-network solution contained in PCs 10 to
20? To examine this issue in more depth, we used PCA to reconstruct the
voxel-wise time series for each individual subject using different numbers
of PCs from 1 to 100 (see Section 2.6 for methodological details). These
reconstructed single-subject time series data could then be used to
calculate single-subject and group-level voxelwise correlation matrices.

The resulting group-level, voxelwise correlation matrices for the
volume-registered data are shown in Fig. 7A, with the top row showing
results for Set 1 and the bottom row for Set 2. For ease in examining the
network relationships, the rows and columns of the matrices have been
sorted by the hierarchical network organization (Fig. S3). The correlation
matrices when using the original full time series of the volume-registered
data are shown in the right-most column of Fig. 7A for reference. When
only including the first two PCs in the time series reconstruction (left-
most column of Fig. 7A), the main division between task-positive and
task-negative is prominent in both datasets, along with some additional
network information for the 7- and 17-network parcellations. When
using PCs 1–10 (middle column), the patterns present in the correlation
Fig. 6. Hierarchical clustering of 7-Network parcellation. Dendrograms
based on the network-level correlation matrices of the Yeo et al. (2011)
7-network parcellation and calculated on the volume registered data are shown
for Set 1 on the left and Set 2 on the right. Task-positive and task-negative
branches divided first, followed by separation of the task-positive branch into
broad somatomotor, broad fronto-parietal and visual subbranches, and finally
into the 7-network solution. Labels and colors are taken from Yeo et al. (2011).
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matrices are already virtually identical to those when using the full time
series. This is quantified in Fig. 7B through the use of R2. When using just
the first 2 PCs for reconstruction, the correlation matrices share
approximately 60–70% of the variance with the matrix when using the
full time series. By the time PCs 1–10 are used, the R2 is already at
approximately 0.9 (90% of the variance). This suggests that the infor-
mation about even fine-grained networks in the 17-network parcellation
are present in PCs 1–10.

To further examine the fine-grained network information present in
the first 10 PCs, we calculated how discriminable the 17 networks were
from each other using two measures. We first calculated the number of
within-versus across-network correlation comparisons that were signifi-
cant at P< .05, 2-tailed (i.e. is the correlation level within network 1
greater than that between network 1 and network 2) out of a total of 272
possible combinations. We next calculated the mean t-value across the
related comparisons for a more continuous measure of network dis-
criminability. For both measures, we considered results relative to a
benchmark of discriminability when using the original full time series.
When using the full time series, 92.6% (252/272) of the pairwise within-
versus across-network comparisons were significant at P< .05 for Set 1,
with a mean (SD) t-value across comparisons of 6.48 (3.53) with 61 de-
grees of freedom (for N¼ 62 subjects). For Set 2 when using the full time
series, these numbers were 96.3% (262/272) significant at P< .05 and a
mean (SD) t-value of 6.13 (2.93) with 31 degrees of freedom. When
including the PCs 1–10 in the time series reconstructions, 249/272
(91.5%) within-versus between-network comparisons were significant at
P< .05 for Set 1 (98.8% of the level obtained when utilizing the full time
series), and 263/272 (96.7%) were significant at P< .05 for Set 2 (100%
of the level of the full time series). The mean t-values were also equal to
or slightly greater than the level when using the full time series for both
Sets 1 and 2 [mean (SD) for Set 1: 6.48 (3.70); for Set2: 6.39 (2.88); 100%
and 104% of level at full time series, respectively]. Indeed, if one asks
how many PCs are needed in the reconstruction to achieve 90% of the
level of discriminability among the 17 networks for both measures when
using the full time series, only PCs 1–7 are needed for Set 1 (238/272,
94.4% of full time series level; mean t-value¼ 5.85, 90.4% of full time
series level) and PCs 1–6 are needed for Set 2 (253/272, 96.6% of full
time series level; mean t-value¼ 5.57, 90.9% of full time series level).
Taken together, these results show that the vast majority of the infor-
mation about even the fine-grained networks in the 17-network parcel-
lation are contained in just the first 6–7 PCs.

3.6. Partial correlation analyses of network-specific variance present in the
GS

Both the PCA and network clustering results indicate that much of the
information about previously reported parcellations - even fine-grained
ones - is effectively low dimensional and contained in the first few PCs.
This is due to the hierarchical nature of the overall network structure, with
a small number of large network branches (N¼ 2 at the top level of the
hierarchy) that would not be expected to cancel when averaged. This
expectation amounts to a clear prediction: If a small number of mutually
orthogonal patterns dominate the average, one should be able to find
network-specific variance still present in the GS time series. To examine
this prediction, we used partial correlation analyses to check for network-
specific variance present in the GS at each level of the network hierarchy
from N¼ 2 to N¼ 17 (see Section 2.10 for methodological details). Box
plots conveying information about the full distributions of partial r-values
across subjects are shown in the top two rows of Fig. 8,with the bottom row
showingwhich brain networks replicate in contributing unique variance to
the GS across Sets 1 and 2 (green brain masks). For the 2-network par-
cellation (left column of Fig. 8), both task-positive and task-negative
network time series contributed unique variance to the GS (Set 1:
P< 3.27� 10�26 for both; Set 2: P< 2.65� 10�15 for both). For the 4-
network parcellation, all four networks contributed unique variance to
the GS in Set 1 (P< 5.41� 10�17 for all) and three out of four contributed



Fig. 7. Network information present in the first few PCs. (A) Group-average correlation matrices based on time series reconstructions (volume registered data) and
using only a subset of the full PCs are shown for Sets 1 and 2 (top and bottom rows, respectively). Matrix rows/columns have been sorted to reflect the hierarchical
arrangement of the full set of network relationships (see Fig. S3). Colored brackets (yellow/red) mark the task-positive/task-negative boundaries, with the Yeo et al.
(2011) 7-network parcellation boundaries marked with color labels (key shown to the right) and the 17-network parcellation boundaries marked by dashed black lines
in the field of the matrices. Reconstructions using only the first two PCs are shown in the left column, using the first 10 PCs in the middle column, and using all PCs (i.e.
the full time series) shown in the right column for reference. Correlation values are depicted in the matrices using color, with colorbars shown to the right of each
matrix and the max/min color values set as the mean correlation� 2 standard deviations to enhance visualization of the network distinctions present in the data. (B)
R2 values calculated for the upper triangle of the reconstructed group-average correlation matrices relative to the group-average correlation matrix based on the full
time series. The x-axis represents how many cumulative PCs are used in the time series reconstruction (e.g. PCs 1–2 or PCs 1–10), and blue and red curves show the
results for Sets 1 and 2, respectively. Values were estimated at PC¼ 1 (shown with a red and blue colored dot) by calculating the R2 for data reconstructed without the
1st PC (i.e. using all PCs but the first) and subtracting from 1. Both curves indicate that approximately 10 PCs are sufficient to explain 90% of the total variance present
in the group-average voxelwise correlation matrices calculated using the full time series.
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significant variance in Set 2 (P< 5.73� 10�10 for theDMN, fronto-parietal
and visual networks), with only the Somatomotor network failing to reach
FDR-corrected significance [t(31)¼ 1.82, P< .079, a non-significant
trend]. For the 7-network parcellation, all 7 networks contributed
unique variance to the GS in Set 1 (P< 1.36� 10�9 for all), whereas 3 out
of 7 were found to contribute unique variance in Set 2 (P< 1.4� 10�08 for
theDMN, fronto-parietal and visual networks), similar to the results for the
4-network parcellation. Finally, for the 17-network parcellation, 13/17
networks contributed unique variance to the GS in Set 1 (P< .0015 for all
13), with one additional network contributing an uncorrected level
[network 16: t(61)¼ 2.92, P< .005]. In contrast, 3/17 networks (net-
works 1, 11, and 17) contributed unique variance to the GS in Set 2
(P< .0015 for all 3), with networks 3 and 12 contributing at an uncor-
rected level (P< .05 and P< .0066, respectively) and networks 7 and 16
showing non-significant trends (P¼ .054 and P¼ .074, respectively).
While only 3/17 networks replicated across Sets 1 and 2, Set 2 had less
statistical power to show such effects (N¼ 32 compared to N¼ 62 for Set
1). If one considers effects that showed at least a trend in both sets, 7/17
demonstrated some unique contribution to the GS. In any case, consistent
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with the prediction of low dimensionality, multiple networks were found
to contribute unique variance to the GS at each level of the network hi-
erarchy, regardless of how the data were de-noised.

Out of concern that residual global artifacts might somehow
contribute variance to the partial-r estimates, we conducted a set of
follow-up analyses to examine whether the partial correlation approach
was removing common variance as expected. It is well established that
even after de-noising, residual head motion and other artifacts can
remain in resting-state data (see Power et al., 2015; Satterthwaite et al.,
2017, for reviews). We took each subject’s network-averaged time series
in the de-noised data and simply regressed it against the GS time series
either prior to partialling the other networks or afterwards (other net-
works were only partialled from the network time series for these ana-
lyses rather than from the GS, too, leaving the common variance in the
GS). We then examined the beta coefficients from these regressions
against the degree of head motion that each subject exhibited during the
rest scan (see Section 2.10 for methodological details). If a subject moved
a lot during a scan, one expects those artifacts to be present to an extent in
both in the individual network time series in the de-noised data and in



Fig. 8. Partial correlation analyses of network-specific information present in the GS. Shown are box plots of the partial r-values of each network with the GS,
removing shared variance with the other networks at the same level of the network hierarchy. The red horizontal line in each box plot represents the median (50th
%-ile), the blue horizontal lines just above and below the median represent the 25th and 75th %-iles, the black horizontal lines represent the minimum and maximum
values, and the boundaries of the horizontal notches inside the 25th and 75th %-iles depict the 95% confidence limits of the median. The different network par-
cellations are shown across the columns (N¼ 2, 4, 7, and 17), the first row shows results for Set 1, and the second row shows results for Set 2. All Fisher’s z-
transformed partial r-values were tested against 0 at the group level using one-sample t-tests, correcting for multiple comparisons using FDR. Comparisons surviving
FDR correction are highlighted with light blue for Set 1 and light yellow for Set 2. The bottom row renders the locations of the networks that survive correction and
replicate across the two sets (shown in green). Network labels/codes for the 7- and 17-network parcellations are taken from Yeo et al. (2011) and match the publicly
available parcellations found at https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011.
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the GS of the volume registered data, inflating the beta coefficient. For a
subject who moved less, there should be less inflation of the same beta
coefficient. After partialling common variance from the networks, the
inflation of the beta coefficients by head motion should be effectively
removed since that variance is highly similar across the brain. In accord
with these expectations, there were strong residual effects of headmotion
on the network->GS beta coefficients in Set 1 prior to partialling
(cleaned by ANATICOR), with correlations ranging from 0.408 to 0.683
[mean¼ 0.587, SD¼ 0.069] across all network time series and network
levels examined (all FDR-corrected with P< .001). After partialling the
other network time series, the network->GS beta coefficients no longer
significantly correlated with head motion magnitude [mean¼ 0.068,
SD¼ 0.178, none surviving FDR correction]. For Set 2, cleaned by
MEICA, no network->GS relationships were significantly correlated
with head motion magnitude either before [mean¼ 0.245, SD¼ 0.119,
none surviving FDR correction] or after partialling other networks
[mean¼ 0.032, SD¼ 0.166, none surviving FDR correction]. These re-
sults suggest that MEICA may do a better job removing head motion
artifacts than ANATICOR (see Kundu et al., 2013; Power et al., 2018, for
further discussion). Nevertheless, for the purposes of the current study,
the partialling of other network time series does indeed appear to remove
residual global artifacts from the partial correlation estimates quite well.

3.7. Amount of variance in the GS explained by network-specific sources

Having established that network-specific variance is present in the
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GS, it is still unclear whether this amounts to a large portion of variance.
If the network-specific variance only makes up 1–2 percentage points of
the total GS variance, then GS removal might still not be expected to have
a large impact on the resultant signals after de-noising. To approach this
question, we used the partial r-values from the analyses in Fig. 8 to es-
timate R2 of the network-specific portions of variance relative to the total
GS time series variance for each subject (see Section 2.10 for complete
details). Given that partialling network time series from other networks
within the same large branch of the hierarchy will remove the shared
variance that defines that branch, the best estimate of the total network-
specific variance will come from the highest level of the hierarchy,
namely the division between task-positive and task-negative voxels for
the 2-network parcellation. Indeed, the unique signatures from the more
specific subnetworks within each large branch will be present in the
average of each of the two branches.

The full distributions across subjects for the network-specific R2 es-
timates are shown in box plots in Fig. 9A, for Set 1 on the left and Set 2 on
the right. The mean (SD) R2 estimates for the task-positive branch of the
network hierarchy are 0.109 (0.066) for Set 1 (median R2¼ 0.089) and
0.107 (0.057) for Set 2 (median R2¼ 0.114). For the task-negative
branch, the mean (SD) R2 estimates are 0.070 (0.055) for Set 1 (me-
dian R2¼ 0.052) and 0.091 (0.069) for Set 2 (median R2¼ 0.075). When
combined into a total estimate of the variance explained in the GS time
series by network-specific sources, the mean (SD) estimates are 0.179
(0.116) for Set 1 (median R2¼ 0.141) and 0.198 (0.099) for Set 2 (me-
dian R2¼ 0.182). These estimates indicate that at least 14–18% of the GS

https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011


Fig. 9. Proportion of variance in the GS due to network-specific sources. (A) Box plots of the R2 values derived from the partial correlation analyses are shown
separately for the N¼ 2 network parcels (Task-Positive, Task-Negative), as well as combined across networks, with Set 1 shown on the left and Set 2 shown on the
right. Box plots have the same conventions as described in Fig. 8 (B) Dependence on head motion (AFNI’s @1dDiffMag) of the combined R2 estimates from (A) are
shown in scatterplots for Set 1 on the left and Set 2 on the right. In both sets, significant correlations (Spearman) were observed, with lower R2 values for subjects with
higher levels of head motion. Best-fit linear regression lines are shown as dashed red lines.
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time series is due to network-specific sources in both datasets on the
average. To the extent that neurogenic sources of variance that are
common across networks (e.g. Sch€olvinck et al., 2010; Wen and Liu,
2016) have been removed from these analyses by the partialling step, we
would expect the full neurogenic portion of the GS to be even higher,
although it is hard to estimate exactly how much higher given the dif-
ficulty in separating this common variance from artifact sources. One
might therefore think about these estimates as a floor number rather than
a ceiling.

When examining the individual variability of the single-subject R2

estimates around the mean in both datasets, it is clear that some values
are extremely high (e.g. 0.5 indicating 50% of the variance) whereas
some are lower (e.g. 0.1 or below). What might mitigate such a wide
range of estimates? One obvious factor to consider is the degree of head
motion. For subjects with higher magnitudes of head motion, one can
anticipate that a larger fraction of the GS will be due to motion-related
signals, resulting in smaller R2 estimates for the network-specific con-
tributions. Fig. 9B shows that this is indeed the case for both Sets 1 and 2,
with larger head motion resulting in a smaller R2 estimate for the
network-related signals [Set 1: Spearman r(60)¼�0.519, P< .0001; Set
2: Spearman r(30)¼�0.457, P< .01]. For subjects with higher head
motion, the network-specific estimates shrink from the mean of 15–20%
down to around 10% of the variance in the GS, whereas they increase to
25–30% for subjects with low head motion - with some subjects in both
sets having estimates as high as 40–50%. In other words, the subjects
with the best data quality can have very large portions of the GS due to
network-specific sources. It follows then that using GS regression to de-
noise the subjects with the worst data quality comes at the cost of
maximally distorting the data from the subjects with the best data
13
quality.
We would also point out that these results bear some similarity to the

results of Simulation 2 in which the weighting of the common random
time series was increased (see Fig. S2, panel B), with large portions of the
GS due to network-specific sources at a low common signal weight (near
0) and small portions of the GS due to network-specific sources at high
weights. While there are many potential substantive differences between
the simulations and real fMRI data, a simple alignment between the
weight of the simulated common signal and the magnitude of head
motion in real data suggests that an appropriate weight in the simulation
to match the data would range between 0.5 and 1.5 (compare Figs. 9 and
S2), with a weight of 1.0 being the best match to the mean of the real data
(~20% of the GS due to network-specific sources).

4. Discussion

In the current paper, we have examined the dimensionality of resting-
state fMRI data in two separate datasets with an eye toward the GS
regression debate. We find that while many fine-grained brain networks
can be distinguished in resting-state data, most of the time series variance
related to previously published network parcellations is contained within
the first 6–7 PCs. Rather than representing mutually orthogonal time
series, these fine-grained brain networks are positioned within a much
lower-dimensional network hierarchy (see also Doucet et al., 2011), with
the largest branches representing the well-known distinction between
task-positive and task-negative – or alternatively “non-default” and
“default” – brain regions (Buckner et al., 2008; Fox et al., 2005, 2009;
Raichle, 2015b). The implication of this hierarchical organization, which
was illustrated here in simulated as well as real data, is that
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intercorrelated time series within the large branches do not cancel to
0 when averaged together. Consistent with this, we found that
network-specific time series accounted for at least 14–18% of the GS time
series variance in both datasets examined. Subjects with the best quality
data (low head motion) were found to contribute an even higher pro-
portion of network-specific variance to the GS, reaching as high as
40–50%. Accordingly, the current study makes the following novel
contributions to the literature: 1) we have shown that despite a large
number of distinguishable networks, the dimensionality of resting-state
data is low (<10) and in the range in which mathematical distortions
due to GS regression are expected to be high (following Gotts et al.,
2013a,b; Saad et al., 2013); 2) relatedly, we have shown that network
number and the dimensionality of resting-state data are not equivalent
due to the hierarchical, nested structure of the networks; 3) we have
shown that a relatively large portion of the GS in actual fMRI resting-state
data is made up of network-specific signals, which is qualitatively distinct
from true neural global signals representing factors such as arousal; and
4) we have shown that these network-specific signals are unrelated to
artifacts such as head motion.

At the core of these interconnected issues is the point that networks
that are distinct - meaning that time series are more intercorrelated
within than across networks - are not necessarily mutually orthogonal.
They may simply differ in their level of non-zero (and positive) correla-
tion. When correlation matrices are highly thresholded, the picture that
one gets of network number is that the brain is composed of a great many
parts with at least some distinct and unique variance for each. We do not
dispute this point at all. Indeed, one could conceptualize the 1000
random time series in Simulation 1 as describing 1000 mutually orthog-
onal network time series (for the Zero Clusters case). A full understanding
of the brain and its organization would surely take interest in all of this
complexity. However, low-order inter-relationships among networks that
exist below the thresholding can radically affect the global average of
these networks. Adding just two shared time series in Simulation 1 took
the structure from having extremely high dimensionality (of approxi-
mately 200 orthogonal dimensions) to having a dimensionality of 2 in the
global average. Similarly, in Simulation 2, one could describe the number
of networks as 25 if one thresholds the all-to-all correlation matrix above
an r-value of approximately 0.5. However, the network structure below
such a threshold has a large impact on the average. Our interpretation of
the dimensionality of the actual resting-state fMRI data is that the lower-
order correlation structure, described broadly before (e.g. Doucet et al.,
2011; Fox et al., 2005), has a similar impact on the actual GS. We believe
that the understandable focus on the fine-grained network structure
present in the brain - and thinking of these numerous networks as
somehow “independent” - has helped lead to expectations of high
dimensionality. The findings in the current study highlight the role that
the hierarchical nature of such brain networks has in reducing the
dimensionality to a much lower level when averaging the signals over the
whole brain to a GS.

Some previous studies using PCA to study the GS have also led to
confusion about the dimensionality of signals contributing to the GS.
Carbonell et al. (2011) previously made the case using PCA to study
resting-state fMRI data that the GS was a linearly additive signal with no
network sources based on the level of correlation between the first PC
and GS, which is ~0.97–0.99. Here we have shown that the conclusions
based on this criterion are incorrect, both in the simulated data in which
the same phenomenon occurs when the majority of variance in the GS is
due to network sources (Simulation 2) and in the real fMRI data for which
we have established that ~ 14–18% of the GS variance on average is due
to network-specific sources. Further explorations with Simulation 1
(Fig. S4) have shown that such a high correlation between the 1st PC and
the GS does seem to require the addition of some level of actual common
signal (as was present in Simulation 2). However, the added common
signal can be well short of a majority of the variance in the GS.

The current approach to estimating network-specific contributions to
the GS necessarily removes shared variance among the networks through
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partialling. Some of this shared variance is expected to be due to
neurogenic sources based on previous studies using electrophysiological
measures to establish that a portion of the GS reflects real neural activity
(e.g. Sch€olvinck et al., 2010; Wen and Liu, 2016). For example,
Sch€olvinck et al. (2010) used simultaneously acquired microelectrode
recordings and BOLD data in monkeys to show that LFP power in high
(40–80Hz) and low (2–15Hz) frequency bands at several different lo-
cations (extrastriate, parietal and frontal cortex) was correlated with
BOLD fluctuations broadly over the entire cerebral cortex. These values
peaked at correlation levels between 0.2 and 0.3, suggesting approxi-
mately 4–9% of the variance accounted for in the GS. Some have sug-
gested that this portion of the GS might correspond to factors such as
overall arousal level (e.g. Chang et al., 2016; Pisauro et al., 2016; see Liu
et al., 2017, for review). Truly global variance is necessarily distinct from
the network-specific portions investigated here, which means that the
combined GS variance is likely larger than 20% if this factor is included.
How much larger for our current scans is unclear because we do not at
present have a clean way to separate variance of neurogenic origin
shared across networks from head motion, respiration and other arti-
factual signals (we do not have veridical measures of these artifact signals
either; see Fig. S5 and related supplementary text for further discussion).
We have already noted that the estimates of network-specific contribu-
tions to the GS can be much larger than 15–20% for individual partici-
pants with the lowest levels of head motion. It is likely then that the
quality control criteria for a given study (our lab commonly requires that
mean Framewise Displacement is less than 0.2 mm/TR in order to
include the data) will influence the portion of variance that is being
inappropriately removed by GS regression, with more distortion due to
GS removal for the studies with the best quality data.

4.1. Implications for the GS regression debate

We agree with Power, Petersen, and colleagues that removing the GS
will be expected to attenuate motion- and breathing-related variance in
the residual resting-state fMRI data, since there is undoubtedly a large
portion of variance in the GS that is due to these factors (e.g. Power et al.,
2017b; see Liu et al., 2017, for review). Indeed, GS regression may also
enhance the discriminability of network signals (e.g. Fox et al., 2009),
facilitating network parcellations. Based on the findings in the current
study, though, we also fully expect that the presence of prominent
network-specific signals in the GS will lead to the additional removal
and/or distortion of these signals. This may qualitatively alter group and
condition comparisons, as well as correlations with external behavioral
variables in the manner described by previous studies (Saad et al., 2012,
2013; Gotts et al., 2013b; Hahamy et al., 2014; Yang et al., 2014). Indeed,
distortion of group comparisons can co-exist with improved network
discriminability and spared network structure after GS regression, as
shown in an extension of the Saad et al. (2012) simulations (see Fig. S6).
However, as with questions about the dimensionality of the data
contributing to the GS average, we’d expect the biggest alterations for
phenomena that are more “low dimensional”. In other words, if group or
condition differences (or neural correlates of a behavioral measure) are
spatially quite extensive over the brain, there is more chance that they
will be altered by GS regression. For phenomena that are much more
focal in nature or only involve a small number of discrete regions, the
alterations to the covariance matrices due to GS regression may have
reduced consequences, potentially having a trivial impact on the results
of a study. Therefore, an important residual question is: Are the neural
correlates of condition or behavioral effects low or high dimensional? For
several prominent clinical conditions (e.g. autism, schizophrenia), results
from group comparisons with careful head-motion matching of groups
and other artifact checking indicate that the neural correlates can indeed
be spatially extensive. For autism, we have recently published an updated
analysis (Ramot et al., 2017, Supplementary Materials) along the lines of
Gotts et al. (2012) using approximately twice as much data (56 ASD, 62
Typically Developing, TD, controls) and matching Age and average
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Framewise Displacement between the groups. These nuisance variables
were further covaried using an Analysis of Covariance (ANCOVA)
approach rather than ANOVA or simple t-tests. While the most prominent
ASD/TD differences involved the STS and somatosensory cortex, the
results at an FDR-corrected level involved more than half of the brain in
some regard. These results are in excellent agreement with the large
voxelwise analysis of ASD/TD comparisons using the ABIDE database by
Cheng et al. (2015) which also matched and covaried average Framewise
Displacement (see Cheng et al., 2015, Supplementary Materials for an-
alyses with and without GS removal). Results this spatially extensive are
expected to be accompanied by differing fits to the GS (as shown previ-
ously in Gotts et al., 2012, Supplementary Materials), as well as by
attenuation and/or alteration of group differences and behavioral cor-
relations due to GS regression (e.g. Gotts et al., 2013b; see also Cheng
et al., 2015, Supplementary Materials). The critical follow-up question,
though, is whether such alterations due to GS regression reflect distortion
based on wide-spread differences in neurogenic signals or reflect differ-
ences in residual global artifacts that GS regression is intended to remove.
This topic is taken up in more detail in the next section.

4.2. Alternative approaches to accounting for head motion and other
artifacts

If one doesn’t remove the GS, what options exist for preventing mo-
tion or other artifacts from affecting the results of a study? As already
mentioned above, one of the main arguments for removing the GS from
the data has been that it is necessary in order to fully remove residual
global artifacts such as head motion and respiration from the data of
individual subjects (e.g. Power et al., 2014a,b; Satterthwaite et al.,
2013a; Power et al., 2018). Ours and other groups (e.g. Berman et al.,
2016; Gotts et al., 2013b; Saad et al., 2013; Yan et al., 2013a, 2013b)
have taken a different approach to addressing these artifacts. The GS is
not removed, but groups or conditions are matched on prominent artifact
measures such as average Framewise Displacement. This has the effect
that little or no between-group variance is explainable by the nuisance
measure. Additionally, within-group and between-group variance is
modeled in the group/condition comparisons by the slopes of the
nuisance measure relative to the functional connectivity values across
subjects (using ANCOVA or Linear Mixed Effects models). To the extent
that the group effects are uncorrelated with the nuisance measure, then
this approach typically leads to stronger rather than weaker group ef-
fects, since within-group variance is reduced by the covariate modeling
while between-group variance is not due to the matching (for further
discussion, see Gotts et al., 2013b; Saad et al., 2013).

This approach will be effective at preventing a global artifact from
contaminating group comparisons or correlations with behavior if an
artifact is adequately measured by the nuisance measure. However, what
if an artifact is poorly measured by the nuisance measure? There are
several “omnibus” measures of variance/covariance that one can
examine to check for unknown additional global artifacts between groups
or that covary with a behavioral measure. GCOR, or global correlation
(Saad et al., 2013; Gotts et al., 2013a,b), is the grand mean of the vox-
elwise correlation matrix. If two groups differ in global artifacts of any
kind that impact the average correlation levels, one would expect dif-
ferences in this measure. However, this measure also has the disadvan-
tage that spatially diffuse but real differences in correlation levels will
also be removed to an extent. A simple alternative to GCOR is checking
the average variances of the voxelwise signals, which after normalization
to percentage signal change is a measure of temporal signal to noise ratio
(tSNR). Any artifact source that adds unique variance to the voxelwise
time series will inflate the local time series standard deviations (or var-
iances). One can match and covary this measure, averaged over the brain
or applied to particular regions of interest. For illustration, this is shown
in the Supplementary Materials for the 56 ASD and 62 TD subjects previ-
ously published in Ramot et al. (2017). Head-motion and more omnibus
measures such as GCOR or average local signal amplitudes have now
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been matched and/or covaried in multiple studies with little or no
attenuation of the magnitude of the effects of interest (e.g. Meoded et al.,
2015; Berman et al., 2016; Song et al., 2015; Steel et al., 2016; Stoddard
et al., 2016; Zachariou et al., 2017). Indeed, in our earlier study on
autism (Gotts et al., 2012), we extensively examined
head-motion-matched and covaried results for both group differences
and behavior with no alteration in the results. Regions differing in
functional connectivity also showed no differences in local signal am-
plitudes (or temporal signal-to-noise ratio) that would be reflective of
additional, unmodeled sources of residual global artifacts (see Gotts
et al., 2012, Supplementary Table 1). While we strongly endorse the
current attempts of many groups to develop improved single-subject
artifact removal methods, of which MEICA is one (Kundu et al., 2012,
2013), the current state of affairs does not prevent existing studies from
drawing solid conclusions from functional connectivity measures
without the removal of the GS.
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