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The hippocampus is critically important for a diverse range of cognitive
processes, such as episodic memory, prospective memory, affective
processing, and spatial navigation. Using individual-specific precision
functional mapping of resting-state functional MRI data, we found
the anterior hippocampus (head and body) to be preferentially func-
tionally connected to the default mode network (DMN), as expected.
The hippocampal tail, however, was strongly preferentially function-
ally connected to the parietal memory network (PMN), which sup-
ports goal-oriented cognition and stimulus recognition. This
anterior–posterior dichotomy of resting-state functional connectivity
waswell-matched by differences in task deactivations and anatomical
segmentations of the hippocampus. Task deactivations were localized
to the hippocampal head and body (DMN), relatively sparing the tail
(PMN). The functional dichotomization of the hippocampus into an-
terior DMN-connected and posterior PMN-connected parcels suggests
parallel but distinct circuits between the hippocampus and medial
parietal cortex for self- versus goal-oriented processing.

hippocampus | functional connectivity | brain networks |
individual variability | resting state

The hippocampus is critically important for a diverse range of
cognitive processes, such as episodic and prospective mem-

ory, affective processing, and spatial navigation (1–7). The hip-
pocampus’ diverse functions rely on its pattern of connectivity
(8). Atypical cortico-hippocampal functional connectivity is as-
sociated with cognitive and affective deficits (9–12). A precise
understanding of the functional organization of the hippocampus
is crucial for understanding the neurobiology underlying hippo-
campally related diseases.
The hippocampus seems to exhibit functional heterogeneity

along its longitudinal axis (anterior–posterior in humans; ventral–
dorsal in rodents). Studies of the rodent hippocampus have dem-
onstrated modular differentiation along its longitudinal axis in
patterns of gene expression, function, and anatomical projections
(2, 13, 14). The rodent ventral hippocampus (anterior in humans)
plays a role in the modulation of stress and affect (2, 4), whereas
the dorsal hippocampus (posterior in humans) is important for
spatial navigation. Hippocampal place field representation sizes in
rodent models also follow a ventral–dorsal gradient reflecting
large-to-small spatial resolution (13, 14). The ventral hippocampus
in rats is anatomically interconnected with the amygdala, temporal
pole, and ventromedial prefrontal cortex (4, 15), while the dorsal
hippocampus is connected with the anterior cingulate and retro-
splenial cortex (4, 15).

In humans, evidence for structural differentiation between the
anterior and posterior hippocampus is provided by age and
Alzheimer’s disease–related hippocampal volume reduction dif-
ferences (16) and diffusion tractography (17). Functional MRI
(fMRI) research has suggested an anterior–posterior gradient in
coarse-to-fine mnemonic spatiotemporal representations (18),
such that anterior hippocampus supports schematics, while spe-
cific details associated with a given event are represented in pos-
terior hippocampus (6, 7). Similarly, other studies have suggested
anterior–posterior hippocampal differences in pattern completion
(i.e., integrating indirectly related events) and pattern separation
(i.e., discriminating between separate but similar events) (19).
Resting-state functional connectivity (RSFC) studies in hu-

mans have provided additional insights into the hippocampal
connectivity that underlies hippocampus-mediated cognition. RSFC
exploits the phenomenon that even in the absence of overt tasks,
spatially separated but functionally related regions exhibit correla-
tions in blood oxygen level–dependent (BOLD) signal (20–24).
Group-averaged RSFC studies have found the hippocampus to be
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functionally connected to the default mode network (DMN)
(25–28). The DMN is deactivated by attention-demanding tasks and
thought to be important for self-referential processes, such as au-
tobiographical memory, introspection, emotional processing, and
motivation (26). Other group-averaged RSFC studies have reported
the anterior hippocampus to be preferentially functionally con-
nected to anterior parts of the DMN, while the posterior hippo-
campus was more strongly connected to the posterior DMN via the
perirhinal and parahippocampal gyri (29–32).
Recent precision functional mapping studies have highlighted

that RSFC group-averaging approaches obscure individual dif-
ferences in network architecture in both the cortex and subcortical
structures (33–41). The large amounts of RSFC data utilized
(>300 min per subject) in precision functional mapping improve the
signal-to-noise ratio and allow for the replicable detection of ad-
ditional functional neuroanatomical detail in the cerebral cortex
(34), cerebellum (33), basal ganglia, thalamus (35, 42), and amyg-
dala (36). In a small, deep-lying structure like the hippocampus,
group-averaging RSFC data may be even more problematic.
The medial parietal cortex is one of the main targets of hip-

pocampal anatomical and functional connectivity (4, 15, 43–47)
and was previously considered part of the DMN (25–28). The
medial parietal cortex encompasses the swath of posterior mid-
line neocortex between motor and visual regions. It includes the
retrosplenial cortex, posterior cingulate, and precuneus (Brod-
mann Area 7, 23, 26, 29, 30, and 31). More recent studies
revealed that parts of the medial parietal cortex belong to the
parietal memory network (PMN) and the contextual association
network (CAN) (23, 34, 39, 41, 48, 49). The PMN and CAN are
immediately adjacent to the DMN in medial parietal cortex and
therefore easily confounded in group-averaged data. The CAN
(34, 41) corresponds to Braga et al.’s DMN subnetwork B (39).
The identification of multiple different networks (DMN, PMN,
CAN, and FPN [fronto-parietal network]) in medial parietal
cortex reflects the ongoing recognition of novel networks, sub-
networks, and organizational principles driven by precision
functional mapping (23, 34, 39, 41, 50–52).
The DMN, PMN, and CAN are all thought to be important for

memory. The DMN and PMN have been associated with dif-
ferent aspects of episodic memory processing. Autobiographical
retrieval (i.e., memory over a lifetime) preferentially increases
activity in the DMN, whereas memory for recently experienced
events preferentially engages the PMN (27, 48, 53, 54). During
explicit memory tasks, activity within the PMN decreases in re-
sponse to novel stimuli but increases in response to familiar
stimuli, such that increased activity seems to reflect attention to
internal memory representations during retrieval (48, 55). The
CAN processes associations between objects or places and their
scenes (41, 56).
Here, we utilized precision functional mapping to examine

individual-specific, hippocampal-cortical functional connectivity.
We utilized both the Midnight Scan Club (MSC) dataset (n = 10
participants; 300 min. of resting-state fMRI data/subject) (34) and
additional extremely highly sampled, higher-resolution resting-state
fMRI data (2.6 mm isotropic voxels; 2,610 min; MSC06-Rep) from
an independent dataset (57, 58). We generated individual-specific
RSFC parcellations of the hippocampus, drawing on several ad-
vantages over group-averaging, including the following: (1) higher
signal-to-noise ratio in deeper subcortical structures without blur-
ring individual differences in network features and (2) more precise
definition of individual-specific cortical functional network maps
(i.e., DMN, PMN, CAN, and FPN).

Results
To characterize individual-specific hippocampal functional con-
nectivity, we used a winner-take-all approach, such that each
voxel was assigned to the cortical network with which it was most
strongly functionally connected (Materials and Methods) (33, 35).

We utilized 15 individual-specific networks generated from the
Infomap community detection algorithm (34) (Fig. 1A and SI
Appendix, Fig. S1).

Anterior–Posterior Dichotomy in Hippocampus Functional Connectivity.
Individual-specific winner-take-all parcellations of the hippocam-
pus revealed that the anterior hippocampus was most strongly
functionally connected to the DMN in all individuals (Fig. 1B and
SI Appendix, Fig. S2). Half of the subjects also exhibited connec-
tivity of the anterior hippocampus to the CAN. In all subjects, the
most posterior portion of the hippocampus (tail) was most
strongly functionally connected to the PMN (Fig. 1B and SI Ap-
pendix, Fig. S2A). In MSC06, the lower-resolution data (4 mm;
300 min.) showed the posterior hippocampus to be most strongly
functionally connected to the FPN. However, winner-take-all of
the higher-resolution dataset (2.6 mm; 2,610 min; MSC06-Rep)
also showed the posterior hippocampus to be most strongly con-
nected to the PMN (SI Appendix, Fig. S3).
We quantified the proportion of the hippocampus preferen-

tially connected to each cortical network in the winner-take-all
analyses (Fig. 1C), which revealed that on average, 56% of the
hippocampus was most strongly connected to the DMN, 13% to
the CAN, 14% to the PMN, and 2% to the FPN.
Given that the winner-take-all parcellation scheme cannot

account for more than one winning network within a voxel, we
also considered the second strongest cortical connection for each
voxel, as previously published (35). We found that functional
connectivity to the FPN was second to the PMN in the posterior
hippocampus (SI Appendix, Fig. S4). Similarly, the runner-up to
the DMN in the anterior portion of the hippocampus was
the CAN.

Head/Body of Hippocampus Functionally Connected to DMN, while
Tail Connects to PMN. The winner-take-all analyses using all 15
functional networks showed differences in network organization
between anterior (DMN) and posterior hippocampus (PMN). To
clarify this anterior–posterior dichotomy, we next utilized a two-
alternative (DMN versus PMN), forced-choice, winner-take-all
approach. In all 10 MSC subjects (Fig. 1D and SI Appendix, Fig.
S2) including higher-resolution 2.6-mm validation data (MSC06-
Rep; SI Appendix, Fig. S3), we found a separation between the
anterior/middle (DMN) and most posterior (PMN) hippocam-
pus. We also found that the DMN was most strongly connected to
the anterior ∼80% of the hippocampus (range: 62 to 88%), with
the posterior ∼20% connecting to the PMN (range: 12 to 38%).
Supplemental analyses demonstrated that the functional con-

nectivity strength of each individual-specific hippocampal parcel
to its winner cortical network was at least z(r) ≥ 0.2 (SI Appendix,
Figs. S6 and S7). SI Appendix, Fig. S8 visualizes the individual-
specific functional connectivity of the DMN and PMN hippo-
campal parcels to the remaining networks.
The differences in network connectivity between anterior and

posterior hippocampus allowed us to generate individual-specific
DMN and PMN hippocampal parcels (Fig. 1B). Next, we verified
that these parcels could not have been generated by chance
(Fig. 2). Hence, we constructed participant-specific null distri-
butions by conducting winner-take-all analyses on the hippo-
campus using all possible pairs of networks (DMN, PMN, and
CAN; FPN excluded) and calculated the resulting parcels’ mean
functional connectivity to the winner network (Fisher z-transformed
correlations: z[r]). We found that the DMN and PMN parcels’
functional connectivity to their winning networks (DMN and PMN,
respectively) was significantly greater than for any other possible
two forced-choice winner-take-all combinations for each subject
(P < 0.001 for all comparisons for all subjects). The DMN parcels
(left and right) were strongly positively correlated with DMN in
every subject but negatively correlated with the PMN (Fig. 2, Top).
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The PMN parcels were strongly positively correlated to the PMN
and uncorrelated with the DMN (Fig. 2, Bottom).
We similarly tested the statistical significance of the anterior

and posterior hippocampus’ preferential functional connectivity

to CAN and FPN (SI Appendix, Figs. S4 and S8). We again
computed the winner-take-all on the hippocampus using two
network candidates (CAN and FPN) (SI Appendix, Fig. S9A).
The functional connectivity of the resulting parcels was also
significantly different from the null distribution (SI Appendix,
Fig. S9B). The CAN–FPN division of the hippocampus strongly
spatially overlapped with the DMN–PMN border (median Dice
coefficient = 0.8; range = 0.4 to 0.9).

Connectivity of Hippocampal Parcels Matches Individual-Specific
Network Boundaries. To visualize the cortical functional connectiv-
ity of the individual-specific hippocampal parcels (anterior, DMN;
posterior, PMN), we displayed it over the previously defined (34)
individual-specific cortical functional network boundaries (Fig. 3
and SI Appendix, Fig. S10). Using the hippocampal DMN and PMN
parcels as regions of interests, we generated seed maps (Fig. 3 A
and B). Subtracting the individual-specific hippocampal seed maps
(DMN parcel–PMN parcel) revealed sharp boundaries between the
DMN and PMN in medial parietal cortex (Fig. 3C). Despite the
DMN and PMN being immediately adjacent to one another in
medial parietal cortex, differences in hippocampal-cortical func-
tional connectivity between the anterior and posterior hippocampus
retraced the boundaries of their respective cortical networks (DMN
and PMN) in an individual-specific manner. In contrast, the dif-
ference map between the group-averaged DMN and PMN parcel
seed maps did not show clear distinctions between the DMN and
PMN networks (Fig. 3, Bottom).

DMN–PMN Functional Connectivity Defines Functional Border in the
Hippocampus. To evaluate gradient versus parcel explanations of
hippocampal organization, we tested whether the hippocampus’
functional connectivity was better explained by an anterior–
posterior gradient or by network parcels using a one-way ANOVA
(Fig. 4). For each hippocampal voxel, we calculated the difference
between its correlation with the DMN and the PMN (ΔFunctional
Connectivity [FC] = FC to DMN – FC to PMN; ANOVA: ΔFC ∼
longitudinal axis coordinates [gradient] or parcel identity). Across
all subjects, both factors (r2par versus r

2
grad) explained roughly equal

amounts of variance with some interindividual differences (Fig. 4).
The r2 across the 10 MSC subjects for parcels (mean r2par = 0.48)

Fig. 1. Hippocampal parcellation using a winner-take-all approach. (A)
Resting-state networks in cortex, shown for exemplar subject (MSC01). Refer
to SI Appendix, Fig. S1 for individual-specific resting-state networks of all
subjects. (B) Winner-take-all parcellation of the hippocampus based on its
functional connectivity to all cortical networks (MSC01), demonstrating a
DMN-anterior and PMN-posterior organization. Parasagittal slices are
shown. Refer to SI Appendix, Fig. S2 for individual-specific hippocampal
parcellations of all subjects. (C) Quantification of the relative resting-state
network representation in the left and right hippocampus for each MSC
subject (1–10) and the MSC Average (Top), using a winner-take-all approach
including all networks. (D) A two-network (DMN, PMN) winner-take-all ap-
proach. Refer to SI Appendix, Fig. S5 for the two-network winner-take-all
parcellations for all subjects.

Fig. 2. DMN and PMN parcels’ functional connectivity to cortical networks.
Displayed is the mean RSFC, Fisher z-transformed correlations z(r), to the cortical
DMN (red) and PMN (blue) for individual-specific winner-take-all–derived
hippocampal DMN and PMN parcels. Black circles indicate the null distribu-
tion, generated from hippocampal winner-take-all parcellations between all
possible network pairs; plotted are each generated parcels’ mean functional
connectivity to its winner network. Although the null distribution for all
participants is shown here, significance testing to demonstrate hippocampal
parcels did not occur by chance and only occurred within subjects against
the participant-specific null distribution. ***P < 0.001 for all subjects, n.s.
P > 0.05.

Zheng et al. PNAS | 3 of 9
Parallel hippocampal-parietal circuits for self- and goal-oriented processing https://doi.org/10.1073/pnas.2101743118

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
08

.5
1.

97
.2

46
 o

n 
M

ar
ch

 2
3,

 2
02

2 
fr

om
 I

P 
ad

dr
es

s 
10

8.
51

.9
7.

24
6.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101743118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101743118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101743118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101743118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101743118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101743118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101743118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101743118/-/DCSupplemental
https://doi.org/10.1073/pnas.2101743118


and gradient (mean r2grad = 0.46) were similar. When replicating
the gradient versus parcel analysis in the more highly sampled,
higher–spatial resolution MSC06-Rep data, we found that parcel
identity and gradient also explained similar amounts of variance
(r2par = 0.77; r2grad = 0.74) (SI Appendix, Fig. S3D). We also entered
the gradient and parcel identity factors into a single analysis of
covariance to calculate the variance explained by one factor after
controlling for the other factor (SI Appendix, Table S1). We found

that both factors simultaneously explained separate variance,
demonstrating potentially superimposed gradient and parcel or-
ganization in the hippocampus.
Having established that parcels and gradients explain similar

amounts of variance, we tested for a functional border between
hippocampal DMN and PMN parcels using receiver–operator
characteristic (ROC) analyses (SI Appendix, Fig. S11). We de-
fined border voxels as adjacent to the other parcel within a two-
voxel radius and calculated the connectivity similarity (to cortex)
for all possible pairs of border voxels. We sorted the similarity
values based on whether the pair of voxels belonged to the same
or different parcels (SI Appendix, Fig. S11 histograms) and gen-
erated an ROC curve for each individual (SI Appendix, Fig. S11).
We found that border voxels that belonged to the same hippo-
campal parcel (DMN or PMN) were significantly more similar
than voxels that belonged to different parcels for every individual
(Area Under the Curve = 0.64 to 0.88; P < 0.001). Thus, all 10
subjects had a discernible functional border between the DMN
and PMN parcels.

Anatomical Segmentation of Hippocampus Matches Functional Parcellation.
Winner-take-all functional parcellation (Fig. 1) segmented the
hippocampus into DMN and PMN parcels. To test whether the
functional parcellations revealed by the winner-take-all approach
mapped onto anatomical definitions of the hippocampal head/body
and tail, we examined the spatial overlap between functional par-
cels and anatomical segments. We used anatomical landmarks (59)
to select the coronal slice that demarcates the border between the
body and tail of the hippocampus (SI Appendix, Fig. S12). We
found a high degree of spatial overlap between anatomical seg-
ments and winner-take-all parcels (Dice coefficient median: 0.84,
range: 0.74 to 0.92) across all subjects (Fig. 5A). We also used a
percentage-based approach (Fig. 5A) for segmenting the tail (pos-
terior 20%) from the head/body (anterior 80%) of the hippocam-
pus (3), which yielded very similar segmentations to the landmark
approach (Dice coefficient median: 0.92, range: 0.85 to 0.96).

Fig. 3. Functional connectivity of individual-specific hippocampal DMN and
PMN parcels. (A) Functional connectivity of right hippocampal DMN parcel
to cortex for exemplar subject (MSC01, Top) and MSC average (Bottom). (B)
Functional connectivity of right hippocampal PMN parcel to cortex for ex-
emplar subject (MSC01, Top) and MSC average (Bottom). (C) Difference
between cortical connectivity of DMN and PMN parcels (DMN–PMN),
showing that hippocampal functional connectivity respects individual-
specific network borders. Warm colors represent greater DMN connectiv-
ity, and cool colors represent greater PMN connectivity. Functional connec-
tivity values are Fisher z-transformed z(r). Refer to SI Appendix, Fig. S10 for
all subjects.

Fig. 4. Hippocampal functional connectivity to DMN and PMN along the anterior–posterior axis. (A) Schematic of the hippocampus (MSC01) with the
longitudinal (AP) axis drawn and the parcels outlined. For each subject, we determined each voxel’s position along the longitudinal axis in the hippocampus as
well as its parcel identity. (B) Scatterplots depicting the pairwise differences in functional connectivity to DMN and PMN as a function of coordinate position
along the longitudinal axis. The amount of variance in functional connectivity differences explained by the gradient (grad) and parcel (par) models are noted,
suggesting equal variance explained and thereby both a gradient and parcel organization. Functional connectivity values z(r) are Fisher z-transformed.
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Next, we tested whether anatomically defined hippocampal
segments (head/body versus tail) replicated the functional connec-
tivity differences observed with functionally defined parcels (DMN
versus PMN; Fig. 3). This validation analysis also found that func-
tional connectivity patterns of the hippocampal head/body and tail
differed starkly (Fig. 5B). That is, the head and body of the hip-
pocampus were strongly preferentially connected to the DMN, and
the tail was strongly preferentially connected to the PMN. The
anatomical hippocampal segments mapped onto the functionally
defined parcels well enough to potentially serve as a proxy.

Task-General Deactivations Specific to the DMN while Relatively
Sparing the PMN. To validate the segregation of the DMN from
the PMN, seen with resting-state and structural MRI, we next
examined task-driven deactivations during spatial coherence and
noun–verb discrimination tasks (mixed blocked event-related
design) (34, 60). We found that robust task-driven decreases in
activity were localized to the DMN, with less pronounced or no
deactivations in the PMN (Fig. 6A). The task-general activity
decreases, the DMN’s defining characteristic, were significantly
greater for the DMN than for the PMN in the cortex as a whole
(Fig. 6B; P < 0.001), as well as the DMN and PMN parcels in the
medial parietal cortex (Fig. 6C; P < 0.001), and the hippocampus
(Fig. 6D; P = 0.02). Thus, the dichotomization into parallel
DMN and PMN hippocampal-parietal circuits was borne out by
anatomy, functional connectivity, and task fMRI.

Discussion
Superimposition of Functional Parcels onto Hippocampal Gradients.
Prior studies have largely conceptualized the organization of the
hippocampus along gradients—e.g., size of place field repre-
sentations (13, 14) or spatiotemporal scale of mnemonic repre-
sentations (6, 7). Using individual-specific precision functional
mapping, we documented overlapping gradient and parcel organi-
zation along the hippocampal anterior–posterior axis (Fig. 4). We
found the anterior ∼80% of the hippocampus (head and body) to
be preferentially functionally connected to the DMN, with sec-
ondary connections to the CAN (Figs. 1 and 2). In contrast, the
posterior hippocampus (tail) was preferentially functionally con-
nected to the PMN, with secondary connections to the FPN. The
DMN, CAN, PMN, and FPN are arranged as a topological en-
semble, such that these networks are immediately adjacent to one
another in both medial parietal cortex and hippocampus.
To test whether these results were affected by data amount,

quality, or resolution, we used higher-resolution (2.6-mm) data
from MSC06-Rep (2,610-min), which again showed a parcel and
gradient organization. The parcellation of the hippocampus,
based on resting-state fMRI data (Figs. 1 and 2), was validated
by the localization of task-driven deactivations to DMN parcels
while relatively sparing the PMN (Fig. 6). The dichotomization
of the hippocampus into anterior and posterior functional cir-
cuits, validated with multiple modalities and analytical methods,
gave rise to our dual-circuits model of hippocampal-cortical
connectivity for self- and goal-oriented processing (Fig. 7).

Anterior Hippocampus to Medial Parietal Cortex Circuit for Self-Oriented
Processing.Our results more precisely define the anterior 80% of the
hippocampus as the hippocampal subregion that interacts with the
cortical DMN, likely mediated by adjacent perirhinal and para-
hippocampal cortex (32, 61). The DMN is generally thought to
mediate introspective, self-oriented types of cognition (62).
We observed some intermixed functional connectivity to the

CAN in the anterior hippocampus. In higher-resolution (2.6-mm
isotropic voxels) and more highly sampled (2,610 min) data, we
were able to replicate the observation that the anterior hippocam-
pus is functionally connected to both the DMN and CAN. With
more and higher-resolution data, CAN functional connectivity of
the anterior hippocampus becomes more readily apparent (SI Ap-
pendix, Fig. S3). In contrast to the functional border between head/
body (DMN + CAN) and tail (PMN + FPN), the network rep-
resentation of both DMN and CAN in the hippocampal head/body
appears to be intermixed. The interdigitated nature of the DMN
and CAN in the head/body of the hippocampus even with 2,610 min
of 2.6-mm data (MSC06-Rep) suggests that this is not caused by
noise or blurring. This could be due to the fact that 1) the DMN
proportionally occupies a larger part of the neocortex and/or 2) the
CAN is a subnetwork of the DMN (39, 41, 50, 63).
Some have theorized that the CAN mediates the generation of

predictions in top-down processing based on learned associations
between environmental features (e.g., between objects and their
associated contexts) generated from a lifetime of repeating pat-
terns of co-occurrences (49, 56, 63, 64). Therefore, as contextual
associations are important for episodic memory and spatial map-
ping, the anterior hippocampus may be a zone of integration for
both the DMN and CAN, utilizing associative knowledge during
episodic memory and affective processing. Others have argued
that the hippocampus plays a role in binding item information
within spatiotemporal contexts (65) and have suggested a role in
scene processing (66).
The presence of both CAN and DMN functional connectivity

highlights the importance of integrating contextual, social, and
affective information in the anterior hippocampus, which is
consistent with prior notions of the anterior hippocampus’ in-
teractions with the ventro-medial prefrontal cortex in schema

Fig. 5. Functional connectivity of anatomically defined hippocampal seg-
ments (head/body versus tail). (A) The hippocampus was split into two seg-
ments, head/body and tail, based on either anatomical landmarks or a
percentage-based approach (exemplar subject MSC01 shown). Refer to SI
Appendix, Fig. S12 for landmark and percentage-based anatomical hippo-
campal parcellations for all subjects, demonstrating a similar anatomical
segmentation. (B) Functional connectivity seed map for anatomical head/
body (Left), tail (Middle) parcels, and the difference between the two
(Right), for MSC01 as an exemplar, recapitulating functional parcels. Func-
tional connectivity values z(r) are Fisher z-transformed. Refer to SI Appendix,
Fig. S13 for all subjects.
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generation (6, 8, 67). This integration is important for con-
structing and updating schemas (i.e., coherent worldviews) of
one’s environment in which the associated episodic memories,
spatiotemporal contexts, social cognition and emotions are con-
sistent. The anterior hippocampus-medial parietal cortex circuit
may support mental simulations based on autobiographical
memory, theory of mind, and self-referential judgments in order to
guide expectations and comprehension of the interior life and
external environment. A more general description of the anterior
circuit’s function may be to support ordinal sequencing in space-
time (68, 69) in the service of the self.

Posterior Hippocampus to Medial Parietal Cortex Circuit for Goal-Oriented
Processing. The circuit between posterior hippocampus, PMN, and
medial parietal parts of the FPN may be part of a system that
integrates PMN and FPN functions in order to allow attention-
directed memory retrieval. The PMN is deactivated relative to
baseline by novel stimuli (48, 53, 70). The PMN is activated by
familiar stimuli during explicit novel versus familiar judgments but
fails to do so implicitly, without attentional focus on familiarity
(70). The PMN’s task-driven activity patterns seem to reflect at-
tention to relevant internal mnemonic representations (48).
Meanwhile, the FPN supports executive functions (22) such as
directing visual attention. This integration of PMN and FPN in the
posterior hippocampus might involve 1) attention to relevant in-
ternal memory representations or schemas similar to the current
environmental input (48), 2) the retrieval of prior experiences that
may be relevant for selecting task-appropriate responses (9, 71),

and 3) selecting relevant novel information to update the appro-
priate internal memory representations (72, 73).
While it is known that the hippocampus is involved in

novelty–familiarity discrimination tasks (72, 74), our results sug-
gest that the tail of the hippocampus may be more important for
familiarity judgments of recently seen stimuli (3) given the pref-
erential functional connectivity of the tail to the PMN. The PMN
may be crucial for long-term memory encoding by directing cog-
nitive resources toward encoding novel information (72, 73).
A notable finding in the present study is that the hippocampal

tail was not dominantly functionally connected to occipito-
temporal cortex but rather to medial parietal cortex. Prior studies
asserted that the posterior hippocampus is functionally connected,
perhaps weakly, to visual/perceptual neocortical networks in sup-
port of fine, detailed, perceptually rich representations of mem-
ories (8, 75). We theorize that attention to and comparison with
finer-grained mnemonic representations is necessary to determine
whether the current environmental input is familiar or novel
without necessitating preferential engagement of visual networks.
Across-study differences in the functional connectivity of the
posterior hippocampus could be due to 1) use of group-averaged
versus individual-specific data and/or 2) the use of winner-take-all
methods, which partition the hippocampus by its connectivity to
functional networks, not regions of interest.
In addition to being strongly functionally connected to the

PMN, the hippocampal tail was also connected to the FPN. Chen
et al. found that episodic memory retrieval triggered by recently
seen stimuli preferentially activated the PMN and parts of the

Fig. 6. Task deactivations in DMN and PMN. (A) Whole-brain task-general fMRI signal decreases with RSFC defined network borders (DMN, red; PMN, blue)
overlaid. Task deactivations (negative fMRI signal relative to baseline), are shown for all MSC subjects (right hemisphere, medial). Mean task activations
(z-scores) in DMN and PMN were calculated for (B) all of cerebral cortex, (C) the medial parietal cortex, and (D) the hippocampus. On average, there were
greater task-general activity decreases in the DMN compared to the PMN across the whole brain during the task state. ***P < 0.001; *P < 0.05
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FPN (53). This PMN–FPN interaction suggests that certain as-
pects of episodic memory retrieval, such as retrieval of relevant
prior experience for task-appropriate responses, requires broader
network engagement. Engagement of the PMN and FPN during
retrieval of task-relevant prior experience is consistent with the
current finding that the tail of the hippocampus is preferentially
functionally connected to both the PMN and FPN.

Comparisons between the Human Hippocampus and Animal Models.
The hippocampus is patterned on its long axis in rodents
(ventral–dorsal) and primates (anterior–posterior) (2, 4). In ro-
dents, the majority of the hippocampus (dorsal and midtemporal
third) is dedicated to processing visuospatial information while the
neocortex largely processes somatosensory inputs and motor out-
puts (68, 75). With the neocortical expansion in primates, more of
the hippocampus is involved in processing nonsensory, associational
information (68, 75). Based on our functional parcellation, the more
complex functions of the hippocampus (i.e., the self-oriented DMN
parcel) are overrepresented compared to the rodent brain, consis-
tent with association cortex expansion. In comparison, the goal- or
task-oriented PMN parcel, which is homologous to the visuospatial
dorsal hippocampus in rodents, is relatively smaller. The hippo-
campal tail’s functional connectivity to medial parietal cortex may
reflect its conserved role in visuospatial processing (4, 8, 15, 45, 68).
Going forward, studies of human brain function should take into

account the dichotomy of hippocampal functional connectivity to

cortex, ideally using individual-specific methods. While precision
functional mapping may not be feasible in all cases, close approxi-
mations could be obtained by anatomically segmenting the hippo-
campus (Fig. 5) (3).

Importance of Hippocampal–Neocortical Dialogue across Brain States.
Prior group-averaged human functional connectivity studies, in-
cluding those reporting anterior–posterior connectivity differences,
presumed the hippocampus to be exclusively associated with the
DMN. The DMN was originally defined as the brain regions that
collectively deactivated during goal-oriented, attention-demanding
tasks, independent of the specific task demands (62). Subsequently,
the DMN was also shown to be activated by a variety of self-
referential, introspective tasks (25, 26). The separation of brain
regions into self-oriented (DMN) and task- or goal-oriented (not
the DMN) is the first branch point when sorting brain regions
according to their fMRI task activity profiles and RSFC data (21).
Therefore, awake resting hippocampal function in humans has
primarily been linked with the default mode.
The discovery that the tail of the hippocampus is specifically

and selectively functionally connected to task-oriented regions
thought to be important for controlling attention and memory re-
trieval suggests that it is specialized for providing hippocampal
computations in the task mode. Much larger parts of the hippo-
campus and cortex seem dedicated to the self- or internally directed
default mode (25, 62, 76). Uncoupling of the retrosplenial cortex
from other brain regions, including the hippocampus, is associated
with disassociation-like behavior (77). This finding highlights the
importance of the medial parietal cortex for integrating environ-
mental and sensory information with the egocentric perspective in
self-oriented processes. Yet, it appears as if moment-to-moment
goal-oriented activity is also dependent on the hippocampus. Dif-
ferentiable parallel loops between the hippocampus and corre-
sponding medial parietal cortex may be respectively specialized for
supporting the self and action, respectively. Thus, the medial pari-
etal cortex may be a bridge for this hippocampal–neocortical dia-
logue (78, 79) for both self- and goal-oriented processes.
Analyses of high- and low-frequency neural activity in rodents

(sharp-wave ripples and theta) and humans (delta-band and
infra-slow activity) show that the information flow encoded in
high-frequency activity between the hippocampus and cortex
reverses its direction during sleep, compared to the awake
(resting) state (80–83), primarily in the DMN (79, 83). It is
theorized that the direction of low-frequency activity that coor-
dinates this hippocampal–neocortical reciprocal dialogue reflects
the cortical-hippocampal state changes between memory encoding
(wake) and consolidation (sleep) (83–85).
The previously unrecognized neuroanatomical dichotomization

of brain systems for orienting and sequencing in spacetime raises
fundamental questions about human memory and the mental
processes responsible for our sense of self. Given the functional
differentiation of the hippocampal tail from the head/body, does
information flow between the tail and neocortex during activity,
rest, and sleep follow that of the anterior hippocampus’ DMN
parcel? Do anterior and posterior segments still perform the same
basic computations coordinated by theta oscillations (68, 86) or
slightly different computations that are coordinated via multiple
theta generators (87)? Irrespective of the answers to such questions,
it seems clear that hippocampal interactions with cortex are critically
important across all brain states: sleep, wakeful rest, and action.

Materials and Methods
Dataset.
Participants and study design. We employed the publicly available MSC dataset
for our analyses (https://openneuro.org/datasets/ds000224). Details of the
dataset and processing pipeline have been previously described (34). Here,
we describe information about the data and methods that are pertinent to
the current study.

Fig. 7. Schematic of parallel self- and goal-oriented circuits between the
hippocampus and medial parietal cortex. Medial parietal cortex is the pri-
mary target of hippocampal functional connectivity, but connectivity is
segregated by functional network. The bulk of the hippocampus (anterior) is
functionally connected to the DMN (red) and CAN (pearl white) networks.
The tail of the hippocampus is preferentially connected to the PMN (blue)
and fFPN (yellow) networks. This functional connectivity dichotomy maps
onto those parts of hippocampus and medial parietal cortex that deactivate
during goal-oriented tasks (DMN and CAN) and those that do not (PMN and
FPN). This functional organization suggests that human cognition can draw
on two variants of hippocampal and medial parietal circuitry. The anterior
circuit might support sequencing and navigating spacetime (68, 69) in the
service of the self, while the posterior circuit might carry out very similar
operations in the service-specific, goal-directed, attention-demanding tasks.

Zheng et al. PNAS | 7 of 9
Parallel hippocampal-parietal circuits for self- and goal-oriented processing https://doi.org/10.1073/pnas.2101743118

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
08

.5
1.

97
.2

46
 o

n 
M

ar
ch

 2
3,

 2
02

2 
fr

om
 I

P 
ad

dr
es

s 
10

8.
51

.9
7.

24
6.

https://openneuro.org/datasets/ds000224
https://doi.org/10.1073/pnas.2101743118


TheMSC consists of large quantities of fMRI data collected from 10 healthy
right-handed adult participants (24 to 34 y; five females), who were recruited
from the Washington University in St. Louis community. Participants com-
pleted 10 sessions of scanning that were 1.5 h each. Each session consisted of
30 min of resting-state fMRI, in which subjects maintained open-eyed fixation
on a white crosshair presented against a black background. The resting-state
run was followed by fMRI scans for other tasks: a motor task, semantic judg-
ment task, motion coherence task, and an incidental memory task.

The MSC06-Rep data are part of a publicly available dataset (https://
openneuro.org/datasets/ds002766). Details of the dataset and processing
pipeline have been previously described (57).

Structural and fMRI Data Processing. The processing pipeline was developed
for use in individual subjects. The pipeline is available on GitHub (https://
github.com/MidnightScanClub/MSCcodebase). We describe the MRI data
processing in SI Appendix.

Methods and Statistical Analysis of Hippocampus Functional Connectivity.
Manual tracing of the hippocampus. T1-weighted MRI data initially underwent
automated segmentation using Freesurfer version 5.3 followed by manual
editing of hippocampal results using ITK-SNAP software by a single highly-
experienced rater (D.A.). The hippocampal mask was individual specific. Out-
lines were inspected and adjusted in the coronal view of the T1-weighted image
from posterior to anterior sections. The segmentations were subsequently
modified in the axial and sagittal views. The left and right hemispheres were
independently outlined. Anatomical boundaries generally followed the ap-
proaches ofWatson and Thompson, with reference to an anatomic atlas (88–90).
Infomap clustering of cortical resting-state networks. All sessions were concate-
nated together for each individual before proceeding with the Infomap
community detection to 17 cortical networks for each individual MSC subject
(33) (SI Appendix, Fig. S1). Two medial temporal lobe networks were excluded
due to signal bleed from the hippocampus and their poor signal-to-noise ratio.
Winner-take-all parcellation of the hippocampus. We followed previously estab-
lished winner-take-all approaches for functional parcellation of non-
neocortical structures (33, 35) and applied it to the hippocampus. For each
given hippocampal voxel, we calculated the average BOLD time course of all
cortical vertices greater than 20 mm away from the hippocampus that made
up a particular cortical network for all 15 networks. The correlation between
every cortical network and the hippocampal voxel were calculated, in which
the cortical functional network with the greatest positive correlation
strength was declared the winner in the hippocampal voxel. Runner-ups or
the second-place winners were identified based on whether the correlation
strength was at least 66% of the winning correlation strength (33, 35).
Generation of binary masks for the DMN and PMN. We reran the winner-take-all
analysis using just the DMN and PMN networks as potential winner networks
to create masks, splitting the hippocampus into two parcels. All subsequent
analyses relied on this individualized DMN–PMN parcellation.

Hippocampal-cortical functional connectivity maps. The resulting winner-take-all
parcels were used to calculate the functional correlation to all cortical ver-
tices. The mean time course for a parcel was calculated before correlating it with
every vertex on the cortex with correlation strengths Fisher z-transformed. The
resulting functional connectivity maps were plotted with individualized cortical
network boundaries overlaid.
Anatomical segmentation of the hippocampus. The head and body versus the tail
of the hippocampus were anatomically defined by landmarks outlined in
Daugherty et al. (59) The landmarks were identified in the session-averaged
T1-weighted structural image for each individual to identify the coronal slice
in which the fornix appears posteriorly to the thalamus (59). Identification of
the coronal slice was double-checked for accuracy by a neuroradiologist
(J.S.S.). All hippocampal voxels posterior to said coronal slice was considered
the tail of the hippocampus, whereas all voxels anteriorly were considered
the head/body of the hippocampus. Anatomical segmentation of the hip-
pocampus can also be achieved using the percentage-based method (3).
Task deactivations. After standard fMRI preprocessing as outlined in the sec-
tion “Functional MRI (fMRI) preprocessing” in the SI Appendix, task fMRI
data were processed as previously described (34, 91). We used a pair of
mixed block-/event-related design tasks which comprised language and
perceptual task trials in order to model task-based deactivations (34, 91).

Task fMRI data were entered in a General Linear Model (GLM) separately
for each session from each individual using in-house software (FIDL) (92). The
mixed design tasks were modeled jointly in a single GLM with separate
event regressors for onset and offset cues from each task, trials in each task,
and a sustained block regressor for the task period. Event regressors were
modeled using a finite impulse response approach consisting of delta
functions at each of eight time points, allowing for the more complete
modeling of different hemodynamic response function shapes (93). Deacti-
vations were identified using a contrast of the third and fourth time points
from all conditions in the mixed design tasks (against an implicit unmodeled
baseline).

Data Availability. This study used previously published datasets (34, 57), which
are available on OpenNeuro. The MSC dataset (94) is publicly available on
OpenNeuro (https://openneuro.org/datasets/ds000224) as is the MSC06-Rep data
(95) (https://openneuro.org/datasets/ds002766). The processing pipeline is pub-
licly available on GitHub (https://github.com/MidnightScanClub/MSCcodebase).
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